• Title/Summary/Keyword: Toluene decomposition

Search Result 75, Processing Time 0.023 seconds

Nano-Structure Control of SiC Hollow Fiber Prepared from Polycarbosilane (폴리카보실란으로부터 제조된 탄화규소 중공사의 미세구조제어)

  • Shin, Dong-Geun;Kong, Eun-Bae;Cho, Kwang-Youn;Kwon, Woo-Tek;Kim, Younghee;Kim, Soo-Ryong;Hong, Jun-Sung;Riu, Doh-Hyung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.301-307
    • /
    • 2013
  • SiC hollow fiber was fabricated by curing, dissolution and sintering of Al-PCS fiber, which was melt spun the polyaluminocarbosilane. Al-PCS fiber was thermally oxidized and dissolved in toluene to remove the unoxidized area, the core of the cured fiber. The wall thickness ($t_{wall}$) of Al-PCS fiber was monotonically increased with an increasing oxidation curing time. The Al-PCS hollow fiber was heat-treated at the temperature between 1200 and $2000^{\circ}C$ to make a SiC hollow fibers having porous structure on the fiber wall. The pore size of the fiber wall was increased with the sintering temperature due to the decomposition of the amorphous $SiC_xO_y$ matrix and the growth of ${\beta}$-SiC in the matrix. At $1400^{\circ}C$, a nano porous wall with a high specific surface area was obtained. However, nano pores grew with the grain growth after the thermal decomposition of the amorphous matrix. This type of SiC hollow fibers are expected to be used as a substrate for a gas separation membrane.

A Review on VOCs Control Technology Using Electron Beam

  • Son, Youn-Suk;Kim, Ki-Joon;Kim, Jo-Chun
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.63-71
    • /
    • 2010
  • The removal characteristics for aromatic and aliphatic VOCs by electron beam (EB) were discussed in terms of several removal variables such as initial VOC concentration, absorbed dose, background gas, moisture content, reactor material and inlet temperature. It was reviewed that only reactor material was an independent variable among the potential control factors concerned. It was also suggested that main mechanism by EB should be radical reaction for the VOC removal rather than that by primary electrons. It was discussed that the removal efficiency of benzene was lower than that of hexane due to a closed benzene ring. In the case of aromatic VOCs, it was observed that the decomposition of the VOCs with more functional groups attached on the benzene ring was much easier than those with less ones. As for aliphatic VOCs, it was also implied that the longer carbon chain was, the higher the removal efficiency became. An EB-catalyst hybrid system was discussed as an alternative way to remove VOCs more effectively than EB-only system due to much less by-products. This hybrid included supporting materials such as cordierite, Y-zeolite, and $\gamma$-alumina.

Degradation of cyclic compounds by liquid ferrate(VI) manufactured by an innovative method (액상 ferrate(VI)를 이용한 고리형 화합물 분해 특성 연구)

  • Jung, Sun-Young;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.27-35
    • /
    • 2018
  • The stability of liquid ferrate(VI) produced by an innovative method was confirmed and the degradation characteristics of cyclic compounds(Benzene, Aniline, Toluene, 1,4-Dioxane) by liquid ferrate(VI) were investigated under the same reaction conditions. When it was compared with the ferrate manufactured by the wet oxidation method, the liquid ferrate was more stable. And the stability of liquid ferrate was tested at the storage temperature. As a result, only 17.7% of liquid ferrate(VI) has decomposed at the storage temperature($4^{\circ}C$) for 28 days. Among the cyclic compounds, the aniline was rapidly degraded compare to other cyclic compounds, which seems to be due to the electron-donating ability of the substituent, $-NH_2$ group. Especially, when 1,4-dioxane was compared with benzene, the decomposition rate of 1,4-dioxane was lower than that of benzene, suggesting that oxygen atoms hinder the electrophilic reaction. Among 4 cyclic compounds, it was observed that aniline has the highest rate constant than those of other cyclic compounds.

A Volatile Organic Compound Sensor Using Porous Co3O4 Spheres

  • Kim, Tae-Hyung;Yoon, Ji-Wook;Lee, Jong-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.134-138
    • /
    • 2016
  • Porous $Co_3O_4$ spheres with bimodal pore distribution (size: 2-3 nm and ~ 30 nm) were prepared by ultrasonic spray pyrolysis of aqueous droplets containing Co-acetate and polyethylene glycol (PEG), while dense $Co_3O_4$ secondary particles with monomodal pore distribution (size: 2-3 nm) were prepared from the spray solution without PEG. The formation of mesopores (~ 30 nm) was attributed to the decomposition of PEG. The responses of a porous $Co_3O_4$ sensor to various indoor air pollutants such as 5 ppm $C_2H_5OH$, xylene, toluene, benzene, and HCHO at $200^{\circ}C$ were found to be significantly higher than those of a commercial sensor using $Co_3O_4$ and dense $Co_3O_4$ secondary particles. Enhanced gas response of porous $Co_3O_4$ sensor was attributed to high surface area and the effective diffusion of analyte gas through mesopores (~ 30 nm). Highly sensitive porous $Co_3O_4$ sensor can be used to monitor various indoor air pollutants.

Characteristics of the sonolytic reaction of refractory aromatic compounds in aqueous solution by ultrasound (초음파에 의한 수중의 난분해성 방향족화합물의 반응특성)

  • Sohn, Jong-Ryueul;Mo, Se-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.411-419
    • /
    • 2002
  • In this study, the series of ultrasonic irradiation for removal of refractory aromatic compounds has been selected as a model reaction in the batch reactor system in order to obtain the reaction kinetics. The products obtained from the ultrasonic irradiation were analysed by GC and GC/MSD. The decomposition of benzene produced toluene, phenol, and C1-C4 compounds, while the intermediates during the ultrasonic irradiation of 2,4-Dichlorophenol(DCP) were phenol, HCl, catechol, hydroquinone, and benzoquinone. It was found that more than 80% of benzene, and 2,4-DCP solutions were removed within 2 hours in all reaction conditions. The reaction order in the degradation of these three compounds was verified as pseudo-zero or first order. From the fore-mentioned results, it can be concluded that the refractory organic compounds could be removed by the ultrasonic irradiation with radicals, such as $H{\cdot}$ and $OH{\cdot}$ radical causing the high increase of pressure and temperature. Finally, it appeared that the technology using ultrasonic irradiation can be applied to the treatment of refractory compounds which are difficult to be decomposed by the conventional methods.

Thermal Decomposition Behavior of Blocked Diisocyanates Derived from Mixture of Blocking Agents

  • Lee Jung Min;Subramani Sankaraiah;Lee Young Soo;Kim Jung Hyun
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.427-434
    • /
    • 2005
  • To improve the performance and reduce raw material costs, blocked isocyanates were prepared with mixture of blocking agents in many industries. Three blocked isocyanates (adducts) namely $\varepsilon$-caprolactam/benzotriazole-blocked 4,4'-diphenylmethane diisocyanate (MDI), toluene-2,4-diisocyanate (TDI) and 4,4'-dicyclohexyl-methane diisocyanate ($H_{12}$MDI) were synthesized. Six reference adducts were also prepared by blocking MDI, TDI, and $H_{12}$MDI with $\varepsilon$-caprolactam ($\varepsilon$-CL) or benzotriazole. The reactions were carried out in acetone medium and dibutyltin dilaurate (DBTDL) was used as a catalyst. The progress of the blocking reaction was monitored by IR spectroscopy. De-blocking temperatures (dissociation temperatures) of these adducts were studied using DSC and TGA and the results were correlated. As expected, the thermal analysis data showed that de-blocking temperature of blocked aromatic isocyanates was lower than that of the blocked aliphatic isocyanates. The low de-blocking temperature of blocked aromatic isocyanate could be due to electron withdrawing benzene ring present in the blocked isocyanates. It was also found that benzotriazole-blocked adducts de-blocked at higher temperature compared with $\varepsilon$-CL-blocked adducts.

Studies on the Stability of Fenitrothion Formulations (Fenitrothion (MEP) 제제(製劑)의 화학적(化學的) 안정성(安定性)에 관(關)한 연구(硏究))

  • Park, Seung Heui
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.2
    • /
    • pp.381-398
    • /
    • 1975
  • Present work was executed to evaluate effects of adjuvants. stabilizers. moisture. pH and heavy metals on the stability of Fenitrothion in the emulsifiable concentrate. In addition, susceptibility ' of Fenitrothion in various formulations, to UV-irradiation has been also examined. The results are summarized as follows; 1. Xylene and benzene were found to be satisfactory solvents for Fenitrothion emulsifiable concentrate. As expected, polar sol vents such as aliphatic alcohols considerably reduced stability of the pesticides. 2. Of the two non-ionic emulsifiers, an alkyl aryl type Sorpol-1200, in contrast to sorbitan type Tweens, substantially reduced decomposition of Fenitrothion in the emulsifiable concentrates. Moisture and pH of emulsifiers. in the ranges studied. affected little if any. on the stabi ity of the Fenitrothion during the experiment periods. 3. Maleic anhydride, p-toluene sulfonic acid, sulfosalicylic acid, maleic anhydride-sulfosalicylic acid reduced decomposition of Fenitrothion in the emulsifiable concentrate. Addition of organic acids, however, increased liability of Fenitrothion in the emulsifiable concentrate. 4. Presence of either zinc or copper metals in the emulsifiable concentrate containing Tween-80 as a emulsifier, reduced stability of the Fenitrothion. 5. UV-irradiation, as expected, brought decomposition of Fenitrothion. The liability of Fenitrothion formulations decreased in the order, wettable powder ${\gg}$ dust > emulsifiable concentrate.

  • PDF

Research on the phenomenon of sick house syndrome and how to remove harmful gases (새집증후군 현상 및 유해가스 제거방안 연구)

  • Choe, Yoowha
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.449-456
    • /
    • 2020
  • When you move to a new home, or when you change the wallpaper or flooring of your home, office, etc., you can enjoy the joy of opening your new home with the sick house syndrome, such as the stinging smell and stinging eyes that may appear after the interior work. It is only a moment. Volatile organic compounds from building materials, adhesives, wallpaper, and paints used in new buildings or new furniture cause residents' health and discomfort in indoor life. These volatile organic compounds include benzene, toluene, acetone, and styrene, as well as the representative formaldehyde, and these substances are slowly released over a long period of time, causing acute or chronic diseases to residents. As a method for removing organic volatile substances, physical methods using adsorption, chemical methods for converting volatile substances to other substances, or a mixture of the two are mainly used. In this paper, a sustained release chlorine dioxide gel pack obtained by a method for controlling the reaction rate of a reactant and the release of a product is mixed with a zeolite adsorbent having an optimized hole diameter to adsorb and decompose and remove formaldehyde suspended in the air. I would suggest an effective method.

Graft Copolymerization of Acrylic Monomer Containing Aromatic Carboxylic Acid Group onto EPDM and Their Mechanical Properties (EPDM에 방향족 카르복시산을 함유하는 아크릴 단량체의 그라프트 공중합과 기계적 특성)

  • Park, Hyun-Ju;Park, Jong-Hyuk;Bae, Jong-Woo;Kim, Gu-Ni;Oh, Sang-Taek
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.216-222
    • /
    • 2012
  • In this study, p-acryloyloxybenzoic acid(ABA) was synthesized with p-hydroxybenzoic acid(HBA) and acryloyl chloride(AC). The synthesized ABA monomer was grafted onto ethylene-propylene-diene rubber(EPDM) in toluene using benzoyl peroxide(BPO) as an initiator. The structures of ABA and EPDM-g-ABA were characterized by FT-IR, $^1H$-NMR, and $^{13}C$-NMR spectrometer. The graft ratio of EPDM-g-ABA increased with increasing the concentration of the initiator and the monomer. Mechanical properties such as tensile strength and compression set of the EPDM-g-ABA were improved with increasing the graft ratio. The $T_g$ and initial decomposition temperature were also increased with increasing the graft ratio.

Effect of Coupling Agent, Methylene Diisocyanate, in the Blending of Poly(methyl methacrylate)-Modified Starch and Styrene-Butadiene Rubber (폴리(메틸 메타크릴레이트)-개질된 전분과 스티렌-부타디엔 고무의 혼합에서 커플링제 메틸렌 디이소시아네이트의 효과)

  • Li, Mei-Chun;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.49 no.2
    • /
    • pp.117-126
    • /
    • 2014
  • Methylene diisocyanate (MDI) was investigated as a novel interfacial modifier to enhance the performances of poly(methyl methacrylate)-modified starch/styrene-butadiene rubber (PMMA-modified starch/SBR) composites. Owing to the formation urethane linkage on one side and ${\pi}-{\pi}$ adhesion on the other side, MDI acted as an intermediated linkage role in the PMMA-modified starch/SBR interfaces, which was evidenced by the morphological, mechanical, dynamic mechanical and thermal decomposition studies. As a result, the presence of MDI significantly improved the mechanical properties and thermal stability of PMMA-modified starch/SBR composites. In addition, the effect of starch concentration on the various performances of the resulted MDI/PMMA-modified starch/SBR composites, such as morphology, vulcanization characteristics, mechanical properties, toluene swelling behavior, and thermal stability were investigated and discussed in detail. The obtained MDI/PMMA-modified starch/SBR composites exhibited superior mechanical properties to carbon black/SBR (CB/SBR) composites, demonstrating the potential use of the renewable starch as a substitute for CB in the rubber compounds.