• Title/Summary/Keyword: Toluene decomposition

Search Result 75, Processing Time 0.024 seconds

Catalytic Oxidation of Toluene Using NiO Filter Supported on Carbon Fiber

  • Sim, Jong Ki;Seo, Hyun Ook;Jeong, Myung-Geun;Kim, Kwang-Dae;Nam, Jong Won;Kim, Young Dok;Lim, Dong Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.217-217
    • /
    • 2013
  • Carbon-fiber-supported NiO catalytic filters for oxidation of volatile organic compounds were prepared by electroless Ni-P plating and subsequent annealing processes. Surface structure and crystallinity of NiO film on carbon fiber could be modified by post-annealing at different temperatures (500 and $650^{\circ}C$. Catalytic thermal decompositions of toluene over these catalytic filters were investigated. $500^{\circ}C$ annealed sample showed a higher catalytic reactivity toward toluene decomposition than $650^{\circ}C$ annealed one under same conditions, despite of its lower surface area and toluene adsorption capacity. X-ray diffraction and X-ray photoelectron spectroscopy studies suggested that amorphous structures of NiO on $500^{\circ}C$ annealed catalyst caused the higher reactivity for oxidation of toluene than that of $650^{\circ}C$ annealed sample with a higher crystallinity.

  • PDF

Characteristics of Toluene Destruction by Non-thermal Plasma in Packed with Catalyst Reactor (촉매가 충진된 플라즈마 반응기에서의 Toluene 제거특성)

  • 한소영;송영훈;차민석;김석준;최경일;신동준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.1
    • /
    • pp.51-58
    • /
    • 2002
  • Destruction process of toluene using a wire-cylindrical BBD (Dielectric Barrier Discharge) reactor packed with catalysts was investigated to characterize the synergetic effects of non-thermal plasma and catalyst process. The catalysts used in the present study were ${\gamma}$-Al$_2$BO$_3$ and Pt/${\gamma}$-Al$_2$O$_3$. Under the numerous test conditions, specific energy density (SED (J/L)) and the conversion of toluene, defined as (1 -[C$_{f}$]/[C$_{i}$]), were measured. The test results showed that toluene decomposition efficiency followed the pseudo-first order in the case of plasma only process. The pseudo-first order process, however, was modified to pseudo-zeroth order reaction in the case of catalyst-assisted plasma process. This modification of the reaction order was verified based on a simple kinetic model proposed in the present study. Owing to the modification of reaction order, which resulted from the catalytic process, the specific energy to achieve the high removal efficiencies, i.e. 80~90%, was reduced significantly.y.y.

Application of Light-emitting-diodes to Annular-type Photocatalytic Reactor for Removal of Indoor-level Benzene and Toluene

  • Jo, Wan-Kuen;Kang, Hyun-Jung;Kim, Kun-Hwan
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.563-572
    • /
    • 2012
  • Unlike water applications, the photocatalytic technique utilizing light-emitting-diodes as an alternative light source to conventional lamp has rarely been applied for low-level indoor air purification. Accordingly, this study investigated the applicability of UV-LED to annular-type photocatalytic reactor for removal of indoor-level benzene and toluene at a low concentration range associated with indoor air quality issues. The characteristics of photocatalyst was determined using an X-ray diffraction meter and a scanning electron microscope. The photocatalyst baked at $350^{\circ}C$ exhibited the highest photocatalytic degradation efficiencies(PDEs) for both benzene and toluene, and the photocatalysts baked at three higher temperatures(450, 550, and $650^{\circ}C$) did similar PDEs for these compounds. The average PDEs over a 3-h period were 81% for benzene and close to 100% for toluene regarding the photocatalyst baked at $350^{\circ}C$, whereas they were 61 and 74% for benzene and toluene, respectively, regarding the photocatalyst baked at $650^{\circ}C$. As the light intensity increased from 2.4 to 3.5 MW $cm^{-1}$, the average PDE increased from 36 to 81% and from 44% to close to 100% for benzene and toluene, respectively. In addition, as the flow rate increased from 0.1 to 0.5 L $min^{-1}$, the average PDE decreased from 81% to close to zero and from close to 100% to 7% for benzene and toluene, respectively. It was found that the annular-type photocatalytic reactor inner-inserted with UV-LEDs can effectively be applied for the decomposition of low-level benzene and toluene under the operational conditions used in this study.

Thermal Decomposition of Copolymers of Butyl methacrylate and Styrene Produced in a CSTR

  • Kim, Duck-Sool;Kim, Nam-Seok;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.273-280
    • /
    • 2002
  • Thermal decomposition of the copolymer of butyl methacylate(BMA) with styrene(St) was investigated. The copolymer Was obtained at 80 $^{\circ}C$ in a continuous stirred tank reactor(CSTR) using toluene and benzoyl peroxide(BPO), as solvent and initiator, respectively. The reactor volume was 0.3 liters and residence time was 3 hours. The thermal decomposition followed the second order kinetics for BMA/St copolymer. The activation energies of thermal decompositon were in the ranges of 38 ${\sim}43$ kcal/mol for BMA with St copolymer and a good additivity rule was observed with the composition of copolymer. The thermogravimetric trace curve agreed well with the theoretical calculation.

A Study on the TCE/PCE Removal Using Biofiltration and the Microbial Communities Variation Using DGGE Method (생물 여과를 이용한 TCE/PCE제거 및 DGGE법을 이용한 관련미생물 군집변화에 관한 연구)

  • Kim, Eung-In;Park, Ok-Hyun;Jung, In-Gyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1161-1169
    • /
    • 2008
  • The removals of TCE and PCE vapor with or without a supply of toluene as a primary substrate were compared in a biofiltration process, and the variations of microbial communities associated with the removal were also investigated. As a result of investigations on the removals of TCE/PCE in a biofilter B within which TCE/PCE-acclimated sludge was attached on the surface of media without a supply of primary substrate, and those in another biofilter A where toluene-acclimated sludge was attached with a supply of toluene as a primary substrate, followings were found: (i) parts of microbes responsible to the decomposition of toluene vapor participate in the removal of chlorinated VOCs such as TCE and PCE, and (ii) effective biological removals of TCE and PCE vapor do not necessarily need cometabolism. Sequencing of 16S rDNA obtained from the band profile of DGGE (Denaturating Gradient Gel Electrophoresis), it was confirmed that: (i) uncultured alpha proteobacterium, uncultured Desulfitobacterium, uncultured Rhodobacteraceae bacterium, Cupriavidus necator, and Pseudomonas putida were found to be toluene-decomposing microbes, (ii) alpha proteobacterium HTCC396 is a TCE-removing microbe, (iii) Desulfitobacterium sp. is a PCE-decomposing microbe, and (iv) particularly, uncultured Desulfitobacterium sp. is probably a microbe decomposable not only toluene but also various chlorinated VOC vapor including TCE and PCE.

Catalytic NiO Filter Supported on Carbon Fiber for Oxidation of Volatile Organic Compounds

  • Sim, Jong Ki;Seo, Hyun Ook;Jeong, Myung-Geun;Kim, Kwang-Dae;Kim, Young Dok;Lim, Dong Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2105-2110
    • /
    • 2013
  • Carbon-fiber-supported NiO catalytic filters for oxidation of volatile organic compounds were prepared by electroless Ni-P plating and subsequent annealing processes. Surface structure and crystallinity of NiO film on carbon fiber could be modified by post-annealing at different temperatures (500 and $650^{\circ}C$). Catalytic thermal decompositions of toluene over these catalytic filters were investigated. $500^{\circ}C$-annealed sample showed a higher catalytic reactivity toward toluene decomposition than $650^{\circ}C$-annealed one under same conditions, despite of its lower surface area and toluene adsorption capacity. X-ray diffraction and X-ray photoelectron spectroscopy studies suggest that amorphous structures of NiO on $500^{\circ}C$-annealed catalyst caused the higher reactivity for oxidation of toluene than that of $650^{\circ}C$-annealed sample with a higher crystallinity.

A Study on the Photolytic and Photocatalytic Oxidation of VOCs in Air (대기 중 휘발성 유기화합물의 광산화 공정 및 광촉매산화 공정의 처리효율 비교)

  • 서정민;정창훈;최금찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.2
    • /
    • pp.139-148
    • /
    • 2002
  • Both UV Photolysis and Phtocatalytic Oxidation Processing are an emerging technology for the abatemant of Volatile Organic Compounds (VOCs) in atmospheric -pressure air streams. However, each process has some drawbacks of their own. The former is little known as an application for air pollution treatment, so it has been a rare choice in the field. Therefore we have to do more experiment and study for its application for treatment of VOCs. Although the latter has been used in the industrial fields, it still has a difficulty in decomposing high concentrations of VOCs. To solute these problems, we have been studying simultaneous application of those two technologies. We have studied the effects of background gas composition and gas temperature on the decomposition chemistry. It has shown that concentration of TCE and B.T.X., diameter of reactor, and wavelength of lamp have effects on decomposition efficiency. When using Photolysis Process only, the rates of fractional conversion of each material are found at TCE 79%, Benzene 65%, Toluene 68%, Xylene 76%. In case of Photocatalytic Oxidation Process only, the rates of fractional conversion decreased drastically above 30 ppm. When there two methods were combined, the rates of fractional conversion of each material are enhanced such as TCE 93%, Benzene 75%, Toluene 81%, Xylene 90%. Therefore, we conclude that the combination of Photolysis-Photocatalytic Oxidation process is more efficient than each individual process.

Decomposition of Volatile Organic Compounds Using Regenerated Metal Oxide Catalysts (폐 산업용 금속산화물계 촉매를 이용한 휘발성유기화합물의 제거)

  • Nam Seung-Won;Shim Wang-Geun;Kim Sang-Chai
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.4
    • /
    • pp.431-439
    • /
    • 2006
  • Catalytic oxidation of benzene, toluene and xylene (BTX) using regenerated metal oxide catalysts (ZnO-CuO, NiO, $Fe_2O_3$, ZnO, CrO) were investigated in a fixed bed flow reactor to evaluate their feasibility for the purpose of removing volatile organic compounds (VOCs). Four kinds of pre-treatment methods such as gas (air and hydrogen), acid aqueous solution, alkali aqueous solution and cleaning agent were used to find out the optimal regeneration conditions. The physico-chemical properties of the used and regenerated catalysts were characterized by BET and TPR (Temperature Programmed Reduction). The used catalysts showed high conversion ratio and the catalytic ability of toluene oxidation was in the order of ZnO-CuO>$Fe_2O_3$>NiO>ZnO>CrO. We found that the acid aqueous pre-treatment (0.1 N HNO$_3$) was the best way to enhance the catalytic activity of $Fe_2O_3$. In addition, air and hydrogen gas treatment were optimal for NiO and ZnO-CuO catalysts, respectively. Furthermore, the decomposition of BTX depends on the type of a catalyst and a gas molecule.

Decomposition of Hazardous Gaseous Substances by Discharge Plasma (방전 프라즈마 화학반응을 이용한 유해물질의 분해)

  • 우인성;황명환;산외번장
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.79-83
    • /
    • 1996
  • In this study, in attempt to develop a new application technique of discharge plasma, we employed a kind of discharging method called SPCP ( short for Surface discharge induced Plasma Chemical Process). Applications of SPCP have been widely used for years. Compact ozonizers to deodorize household equipments like refrigerators we a part of such applications. We took advantages of the compactness and durability of the SPCP electrode to set up an experimental apparatus for decompositing vapor of aromatic hydrocarbons such as toluene, benzene and xylenes, which are major substances given off In painting or washing processes and aggravate working conditions. Results obtained from this study are summarized as follows. 1) Aromatic hydrocarbon vapors of up to 2,000ppm were almost thoroughly decomposed at the flow rate of 4ℓ/min or lower under the discharge with electric power of 400 Watts. 2) In dry air, as the decomposition progresses, tar-like substance deposits on the discharging areas, which deteriorated the decomposition rate in the end. This substance, however, was almost thoroughly removed by keeping discharge in dry air containing no solvent vapor.

  • PDF

Stability of $4-Chloro-{\alpha}-(4-chlorophenyl)-{\alpha}-(trichloromethyl)$ Benzyl Alcohol(Dicofol) in Various Organic Solvents ($4-Chloro-{\alpha}-(4-chlorophenyl)-{\alpha}-(trichloromethyl)$ Benzyl Alcohol(Dicofol)의 각종유기용매중(各種有機溶媒中)에서의 안정성(安定性))

  • Shin, Hyeon-Hwa;Hong, Jong-Uck
    • Applied Biological Chemistry
    • /
    • v.25 no.3
    • /
    • pp.177-181
    • /
    • 1982
  • This experiment was carried out to investigate the stability of Dicofol solutions which were prepared with various organic solvents such as xylene, toluene, methylisobutyl ketone (M.I.B.K.), cyclohexanone, N.N.-dimetyl formamide (N.N.-D.M.F.) and isophorone under different temperature and storage period. The decomposition rate of Dicofol was increased in the order of cyclohexanone> N.N.-D.M.F.>W.P.>toluene, xylene, M.I.B.K. and isophorone. However, it was shown that precipitation was found in Dicofol solutions such as xylene, toluene and M.I..B.K. except isophorone. Therefore, isophorone was recognized as the best of organic solvents tested for Dicofol in the case of emulsifiable concentrate formulation with it.

  • PDF