• 제목/요약/키워드: Toll-like receptors (TLR)

검색결과 99건 처리시간 0.02초

6-Shogaol의 Toll-like receptor 2, 3, 4 agonists에 의해서 유도된 cyclooxygenase-2 발현 억제 (Suppression of the Expression of Cyclooxygenase-2 Induced by Toll-like Receptor 2, 3, and 4 Agonists by 6-Shogaol)

  • 김점지;안상일;이전수;윤새미;이미영;윤형선
    • 한국식품과학회지
    • /
    • 제40권3호
    • /
    • pp.332-336
    • /
    • 2008
  • 선천성 면역은 병원성균의 침입에 대항하기 위한 숙주의 최초 방어체계라 할 수 있다. 이러한 선천성 면역반응은 병원균들이 가지고 있는 독특한 구조를 인식하는 TLRs에 의해서 조절되어 진다고 알려져 있다. 숙주에 침입한 여러 병원성균들이 TLRs를 자극하며 이렇게 자극된 신호들은 아래로 전달되어 전사요소 $NF-{\kappa}B$의 활성화를 유도하고 결국 COX-2와 같은 염증 유발인자를 유도하여 암이나 질병을 유발하게 된다. 우리는 이번 연구를 통하여 생강 추출물중의 하나인 6-shogaol이 어떻게 $NF-{\kappa}B$ 활성화나 COX-2 발현을 조절하여 항염증 효과를 가지고 있는지를 알아보았다. 6-shogaol은 TLR2, TLR3, TLR4 agonists에 의해서 유도된 $NF-{\kappa}B$ 활성화와 COX-2 발현을 억제하였다. 이러한 결과는6-shogaol이 여러 병원균들로부터 유도되는 염증반응이나 만성적인 질병들을 조절할 수 있다는 중요한 결과를 보여주는 것이라 할 수 있다.

Toll-like receptor 2 promotes neurogenesis from the dentate gyrus after photothrombotic cerebral ischemia in mice

  • Seong, Kyung-Joo;Kim, Hyeong-Jun;Cai, Bangrong;Kook, Min-Suk;Jung, Ji-Yeon;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권2호
    • /
    • pp.145-153
    • /
    • 2018
  • The subgranular zone (SGZ) of hippocampal dentate gyrus (HDG) is a primary site of adult neurogenesis. Toll-like receptors (TLRs), are involved in neural system development of Drosophila and innate immune response of mammals. TLR2 is expressed abundantly in neurogenic niches such as adult mammalian hippocampus. It regulates adult hippocampal neurogenesis. However, the role of TLR2 in adult neurogenesis is not well studied in global or focal cerebral ischemia. Therefore, this study aimed to investigate the role of TLR2 in adult neurogenesis after photochemically induced cerebral ischemia. At 7 days after photothrombotic ischemic injury, the number of bromodeoxyuridine (BrdU)-positive cells was increased in both TLR2 knock-out (KO) mice and wild-type (WT) mice. However, the increment rate of BrdU-positive cells was lower in TLR2 KO mice compared to that in WT mice. The number of doublecortin (DCX) and neuronal nuclei (NeuN)-positive cells in HDG was decreased after photothrombotic ischemia in TLR2 KO mice compared to that in WT mice. The survival rate of cells in HDG was decreased in TLR2 KO mice compared to that in WT mice. In contrast, the number of cleaved-caspase 3 (apoptotic marker) and the number of GFAP (glia marker)/BrdU double-positive cells in TLR2 KO mice were higher than that in WT mice. These results suggest that TLR2 can promote adult neurogenesis from neural stem cell of hippocampal dentate gyrus through increasing proliferation, differentiation, and survival from neural stem cells after ischemic injury of the brain.

Regulation of toll-like receptors expression in muscle cells by exercise-induced stress

  • Park, Jeong-Woong;Kim, Kyung-Hwan;Choi, Joong-Kook;Park, Tae Sub;Song, Ki-Duk;Cho, Byung-Wook
    • Animal Bioscience
    • /
    • 제34권10호
    • /
    • pp.1590-1599
    • /
    • 2021
  • Objective: This study investigates the expression patterns of toll-like receptors (TLRs) and intracellular mediators in horse muscle cells after exercise, and the relationship between TLRS expression in stressed horse muscle cells and immune cell migration toward them. Methods: The expression patterns of the TLRs (TLR2, TLR4, and TLR8) and downstream signaling pathway-related genes (myeloid differentiation primary response 88 [MYD88]; activating transcription factor 3 [ATF3]) are examined in horse tissues, and horse peripheral blood mononuclear cells (PBMCs), polymorphonuclear cells (PMNs) and muscles in response to exercise, using the quantitative reverse transcription-polymerase chain reaction (qPCR). Expressions of chemokine receptor genes, i.e., C-X-C motif chemokine receptor 2 (CXCR2) and C-C motif chemokine receptor 5 (CCR5), are studied in PBMCs and PMNs. A horse muscle cell line is developed by transfecting SV-T antigen into fetal muscle cells, followed by examination of muscle-specific genes. Horse muscle cells are treated with stressors, i.e., cortisol, hydrogen peroxide (H2O2), and heat, to mimic stress conditions in vitro, and the expression of TLR4 and TLR8 are examined in stressed muscle cells, in addition to migration activity of PBMCs toward stressed muscle cells. Results: The qPCR revealed that TLR4 message was expressed in cerebrum, cerebellum, thymus, lung, liver, kidney, and muscle, whereas TLR8 expressed in thymus, lung, and kidney, while TLR2 expressed in thymus, lung, and kidney. Expressions of TLRs, i.e., TLR4 and TLR8, and mediators, i.e., MYD88 and ATF3, were upregulated in muscle, PBMCs and PMNs in response to exercise. Expressions of CXCR2 and CCR5 were also upregulated in PBMCs and PMNs after exercise. In the muscle cell line, TLR4 and TLR8 expressions were upregulated when cells were treated with stressors such as cortisol, H2O2, and heat. Migration of PBMCs toward stressed muscle cells was increased by exercise and oxidative stresses, and combinations of these. Treatment with methylsulfonylmethane (MSM), an antioxidant on stressed muscle cells, reduced migration of PBMCs toward stressed muscle cells. Conclusion: In this study, we have successfully cultured horse skeletal muscle cells, isolated horse PBMCs, and established an in vitro system for studying stress-related gene expressions and function. Expression of TLR4, TLR8, CXCR2, and CCR5 in horse muscle cells was higher in response to stressors such as cortisol, H2O2, and heat, or combinations of these. In addition, migration of PBMCs toward muscle cells was increased when muscle cells were under stress, but inhibition of reactive oxygen species by MSM modulated migratory activity of PBMCs to stressed muscle cells. Further study is necessary to investigate the biological function(s) of the TLR gene family in horse muscle cells.

Comparison of inflammatory cytokine-inducing activity of lipopolysaccharides from major periodontal bacteria

  • Kim, So-Hee;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • 제44권4호
    • /
    • pp.160-164
    • /
    • 2019
  • Porphyromonas gingivalis (Pg), Aggregatibacter actinomycetemcomitans (Aa), Tannerella forsythia (Tf), Prevotella intermedia (Pi), and Fusobacterium nucleatum (Fn) are major periodontal pathogens. Lipopolysaccharides (LPSs) from periodontal bacteria play an important role in periodontal pathogenesis by stimulating host cells to produce inflammatory cytokines. In this study, highly pure LPSs from the five major periodontopathogens were prepared, and their monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α)-inducing activities were compared in human umbilical vein endothelial cells (HUVECs) and THP-1 macrophagic cells, respectively. In HUVECs, LPSs from Aa and Fn were potent stimulators for MCP-1 induction; however, LPSs from Pg, Pi, and Tf were much weaker MCP-1 inducers. In THP-1 cells, LPSs from Pg, Aa, and Fn were relatively strong inducers of TNF-α, whereas LPSs from Pi and Tf produced little activity. The Toll-like receptor (TLR)2/TLR4 dependency of various LPSs was also determined by measuring NF-κB reporter activity in TLR2- or TLR4-expressing 293 cells. LPSs from Aa, Fn, and Tf stimulated only TLR4; however, LPSs from Pg and Pi stimulated both TLR2 and TLR4. These results suggest that LPSs from major periodontal bacteria differ considerably in their cell-stimulating activity.

TLR4 Mediates Pneumolysin-Induced ATF3 Expression through the JNK/p38 Pathway in Streptococcus pneumoniae-Infected RAW 264.7 Cells

  • Nguyen, Cuong Thach;Kim, Eun-Hye;Luong, Truc Thanh;Pyo, Suhkneung;Rhee, Dong-Kwon
    • Molecules and Cells
    • /
    • 제38권1호
    • /
    • pp.58-64
    • /
    • 2015
  • Activating transcription factor-3 (ATF3) acts as a negative regulator of cytokine production during Gram-negative bacterial infection. A recent study reported that ATF3 provides protection from Streptococcus pneumoniae infection by activating cytokines. However, the mechanism by which S. pneumoniae induces ATF3 after infection is still unknown. In this study, we show that ATF3 was upregulated via Toll-like receptor (TLR) pathways in response to S. pneumoniae infection in vitro. Induction was mediated by TLR4 and TLR2, which are in the TLR family. The expression of ATF3 was induced by pneumolysin (PLY), a potent pneumococcal virulence factor, via the TLR4 pathway. Furthermore, ATF3 induction is mediated by p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK). Thus, this study reveals a potential role of PLY in modulating ATF3 expression, which is required for the regulation of immune responses against pneumococcal infection in macrophages.

Expression of Toll-like Receptors, Pro-, and Anti-inflammatory Cytokines in Relation to Gut Microbiota in Irritable Bowel Syndrome: The Evidence for Its Micro-organic Basis

  • Shukla, Ratnakar;Ghoshal, Ujjala;Ranjan, Prabhat;Ghoshal, Uday C
    • Journal of Neurogastroenterology and Motility
    • /
    • 제24권4호
    • /
    • pp.628-642
    • /
    • 2018
  • Background/Aims A Subset of patients with irritable bowel syndrome (IBS) may have mild inflammation due to immune activation. Toll-like receptors (TLRs) and cytokines may cause intestinal inflammation. We studied their expression in relation to gut microbiota. Methods Expression of TLRs and cytokines was assessed in 47 IBS patients (Rome III) and 25 controls using quantitative real-time polymerase chain reaction. Immunohistochemistry was further performed to confirm the expression of TLR-4 and TLR-5. Results Of 47 patients with IBS, 20 had constipation (IBS-C), 20 diarrhea (IBS-D), and 7 unclassified (IBS-U). The mRNA levels of TLR-4 and TLR-5 were up-regulated in IBS patients than controls (P = 0.013 and P < 0.001, respectively). Expression of TLR-4 and TLR-5 at protein level was 4.2-folds and 6.6-folds higher in IBS-D than controls. The mRNA levels of IL-6 (P = 0.003), C-X-C motif chemokine ligand 11 (CXCL-11) (P < 0.001) and C-X-C motif chemokine receptor 3 (CXCR-3) (P < 0.001) were higher among IBS patients than controls. Expression of IL-6 (P = 0.002), CXCL-11 (P < 0.001), and CXCR-3 (P < 0.001) were up-regulated and IL-10 (P = 0.012) was down-regulated in IBS-D patients than controls. Positive correlation was seen between TLR-4 and IL-6 (P = 0.043), CXCR-3, and CXCL-11 (P = 0.047), and IL-6 and CXCR-3 (P = 0.003). Stool frequency per week showed positive correlation with mRNA levels of TLR-4 (P = 0.016) and CXCR-3 (P = 0.005), but inversely correlated with IL-10 (P = 0.002). Copy number of Lactobacillus (P = 0.045) and Bifidobacterium (P = 0.011) showed correlation with IL-10 in IBS-C, while Gram-positive (P = 0.031) and Gram-negative bacteria (P = 0.010) showed correlation with CXCL-11 in IBS-D patients. Conclusions Altered immune activation in response to dysbiotic microbiota may promote intestinal inflammation in a subset of patients with IBS.

Suppression of the Toll-like receptors 3 mediated pro-inflammatory gene expressions by progenitor cell differentiation and proliferation factor in chicken DF-1 cells

  • Hwang, Eunmi;Kim, Hyungkuen;Truong, Anh Duc;Kim, Sung-Jo;Song, Ki-Duk
    • Journal of Animal Science and Technology
    • /
    • 제64권1호
    • /
    • pp.123-134
    • /
    • 2022
  • Toll-like receptors (TLRs), as a part of innate immunity, plays an important role in detecting pathogenic molecular patterns (PAMPs) which are structural components or product of pathogens and initiate host defense systems or innate immunity. Precise negative feedback regulations of TLR signaling are important in maintaining homeostasis to prevent tissue damage by uncontrolled inflammation during innate immune responses. In this study, we identified and characterized the function of the pancreatic progenitor cell differentiation and proliferation factor (PPDPF) as a negative regulator for TLR signal-mediated inflammation in chicken. Bioinformatics analysis showed that the structure of chicken PPDPF evolutionarily conserved amino acid sequences with domains, i.e., SH3 binding sites and CDC-like kinase 2 (CLK2) binding sites, suggesting that relevant signaling pathways might contribute to suppression of inflammation. Our results showed that stimulation with polyinosinic:polycytidylic acids (Poly [I:C]), a synthetic agonist for TLR3 signaling, increased the mRNA expression of PPDPF in chicken fibroblasts DF-1 but not in chicken macrophage-like cells HD11. In addition, the expression of pro-inflammatory genes stimulated by Poly(I:C) were reduced in DF-1 cells which overexpress PPDPF. Future studies warrant to reveal the molecular mechanisms responsible for the anti-inflammatory capacity of PPDPF in chicken as well as a potential target for controlling viral resistance.

Modulation of TNFSF expression in lymphoid tissue inducer cells by dendritic cells activated with Toll-like receptor ligands

  • Han, Sin-Suk;Koo, Ji-Hye;Bae, Jin-Gyu;Kim, Soo-Chan;Baik, Song;Kim, Mi-Yeon
    • BMB Reports
    • /
    • 제44권2호
    • /
    • pp.129-134
    • /
    • 2011
  • Toll-like receptors (TLRs), which recognize structurally conserved components among pathogens, are mainly expressed by antigen-presenting cells such as dendritic cells (DCs), B cells, and macrophages. Recognition through TLRs triggers innate immune responses and influences antigen-specific adaptive immune responses. Although studies on the expression and functions of TLRs in antigen-presenting cells have been extensively reported, studies in lymphoid tissue inducer (LTi) cells have been limited. In this study, we observed that LTi cells expressed TLR2 and TLR4 mRNA as well as TLR2 protein and upregulated OX40L, CD30L, and TRANCE expression after stimulation with the TLR2 ligand zymosan or TLR4 ligand LPS. The expression of tumor necrosis factor superfamily (TNFSF) members was significantly upregulated when cells were cocultured with DCs, suggesting that upregulated TNFSF expression may contribute to antigen-specific adaptive immune responses.

Latest Comprehensive Knowledge of the Crosstalk between TLR Signaling and Mycobacteria and the Antigens Driving the Process

  • Kim, Jae-Sung;Kim, Ye-Ram;Yang, Chul-Su
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권10호
    • /
    • pp.1506-1521
    • /
    • 2019
  • Tuberculosis, which is caused by Mycobacterium tuberculosis (Mtb), is among the most pressing worldwide problems. Mtb uniquely interacts with innate immune cells through various pattern recognition receptors. These interactions initiate several inflammatory pathways that play essential roles in controlling Mtb pathogenesis. Although the TLR signaling pathways have essential roles in numerous host's immune defense responses, the role of TLR signaling in the response to Mtb infection is still unclear. This review presents discussions on host-Mtb interactions in terms of Mtb-mediated TLR signaling. In addition, we highlight recent discoveries pertaining to these pathways that may help in new immunotherapeutic opportunities.

Direct Regulation of TLR5 Expression by Caveolin-1

  • Lim, Jae Sung;Nguyen, Kim Cuc Thi;Han, Jung Min;Jang, Ik-Soon;Fabian, Claire;Cho, Kyung A
    • Molecules and Cells
    • /
    • 제38권12호
    • /
    • pp.1111-1117
    • /
    • 2015
  • Toll-like receptor 5 (TLR5) is a specific receptor for microbial flagellin and is one of the most well-known receptors in the TLR family. We reported previously that TLR5 signaling is well maintained during aging and that caveolin-1 may be involved in TLR5 signaling in aged macrophages through direct interactions. Therefore, it is important to clarify whether caveolin-1/TLR5 interactions affect TLR5 expression during aging. To assess the effect of caveolin-1 on TLR5, we analyzed TLR5 expression in senescent fibroblasts and aged tissues expressing high levels of caveolin-1. As expected, TLR5 mRNA and protein expression was well maintained in senescent fibroblasts and aged tissues, whereas TLR4 mRNA and protein were diminished in those cells and tissues. To determine the mechanism of caveolin-1-dependent TLR5 expression, we examined TLR5 expression in caveolin-1 deficient mice. Interestingly, TLR5 mRNA and protein levels were decreased dramatically in tissues from caveolin-1 knockout mice. Moreover, overexpressed caveolin-1 in vitro enhanced TLR5 mRNA through the MAPK pathway and prolonged TLR5 protein half-life through direct interaction. These results suggest that caveolin-1 may play a crucial role in maintaining of TLR5 by regulating transcription systems and increasing protein half-life.