• Title/Summary/Keyword: Toll-like receptor 2

Search Result 189, Processing Time 0.031 seconds

Acrolein with an α,β-unsaturated Carbonyl Group Inhibits LPS-induced Homodimerization of Toll-like Receptor 4

  • Lee, Jeon-Soo;Lee, Joo Young;Lee, Mi Young;Hwang, Daniel H.;Youn, Hyung Sun
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.253-257
    • /
    • 2008
  • Acrolein is a highly electrophilic ${\alpha},{\beta}$-unsaturated aldehyde present in a number of environmental sources, especially cigarette smoke. It reacts strongly with the thiol groups of cysteine residues by Michael addition and has been reported to inhibit nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) activation by lipopolysaccharide (LPS). The mechanism by which it inhibits $NF-{\kappa}B$ is not clear. Toll-like receptors (TLRs) play a key role in sensing microbial components and inducing innate immune responses, and LPS-induced dimerization of TLR4 is required for activation of downstream signaling pathways. Thus, dimerization of TLR4 may be one of the first events involved in activating TLR4-mediated signaling pathways. Stimulation of TLR4 by LPS activates both myeloid differential factor 88 (MyD88)- and TIR domain-containing adapter inducing $IFN{\beta}$ (TRIF)-dependent signaling pathways leading to activation of $NF-{\kappa}B$ and IFN-regulatory factor 3 (IRF3). Acrolein inhibited $NF-{\kappa}B$ and IRF3 activation by LPS, but it did not inhibit $NF-{\kappa}B$ or IRF3 activation by MyD88, inhibitor ${\kappa}B$ kinase $(IKK){\beta}$, TRIF, or TNF-receptor-associated factor family member-associated $NF-{\kappa}B$ activator (TANK)-binding kinase 1 (TBK1). Acrolein inhibited LPS-induced dimerization of TLR4, which resulted in the down-regulation of $NF-{\kappa}B$ and IRF3 activation. These results suggest that activation of TLRs and subsequent immune/inflammatory responses induced by endogenous molecules or chronic infection can be modulated by certain chemicals with a structural motif that enables Michael addition.

Protective effect of ultrasonication-processed ginseng berry extract on the D-galactosamine/lipopolysaccharide-induced liver injury model in rats

  • Nam, Yoonjin;Bae, Jinhyung;Jeong, Ji Hoon;Ko, Sung Kwon;Sohn, Uy Dong
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.540-548
    • /
    • 2018
  • Background: Acute hepatic failure is a life-threatening critical condition associated with rapid deterioration of liver function and liver transplantation. Several studies have shown that Panax ginseng Mayer has antidiabetic and hepatoprotective effects. However, the hepatoprotective effect of ginseng berry is still unveiled. In this study, we evaluated the hepatoprotective effects of ultrasonication-processed ginseng berry extract (UGBE) on acute hepatic failure model in rats. Methods: Ginseng berry extract (GBE) was ultrasonically processed. The GBE, silymarin, and UGBE were orally administered to male Sprague-Dawley rats for 4 wk. Twenty-four h after the last administration, rats were challenged with D-galactosamine (D-GalN)/lipopolysaccharide (LPS). Results: After ultrasonication, the component ratio of ginsenosides Rg2, Rg3, Rh1, Rh4, Rk1, Rk3, and F4 in GBE had been elevated. Administration of UGBE significantly increased the survival rate of D-GalN/LPS-challenged rats. Pretreatment with UGBE significantly decreased serum alanine aminotransferase, aspartate aminotransferase, and total bilirubin levels in D-GalN/LPS-challenged rats in a dose-dependent manner. The levels of enzymatic markers for oxidative stress (superoxide dismutase, glutathione peroxidase, catalase, and glutathione) were increased by UGBE treatment in a dose-dependent manner. Tumor necrosis factor alphalevel, inducible nitric oxide synthase activities, and nitric oxide productions were reduced by UGBE treatment. In addition, hemeoxygenase-1 levels in liver were also significantly increased in the UGBE-treated group. The protein expression of toll-like receptor 4 was decreased by UGBE administration. Hematoxylin and eosin staining results also supported the results of this study showing normal appearance of liver histopathology in the UGBE-treated group. Conclusion: UGBE showed a great hepatoprotective effect on D-GalN/LPS-challenged rats via the toll-like receptor 4 signaling pathway.

Association of Toll-like receptor 2-positive monocytes with coronary artery lesions and treatment nonresponse in Kawasaki disease

  • Kang, Soo Jung;Kim, Nam Su
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.7
    • /
    • pp.208-215
    • /
    • 2017
  • Purpose: Activation of Toll-like receptor 2 (TLR2) present on circulating monocytes in patients with Kawasaki disease (KD) can lead to the production of proinflammatory cytokines and interleukin-10 (IL-10). We aimed to determine the association of the frequency of circulating TLR2+/ CD14+ monocytes (FTLR2%) with the outcomes of KD, as well as to compare FTLR2% to the usefulness of sIL-10. Methods: The FTLR2% in patients with KD was measured by flow cytometry. Serum levels of IL-10 (sIL-10) were determined in 31 patients with KD before the initial treatment with intravenous immunoglobulin (IVIG) and in 21 febrile controls by using enzyme-linked immunosorbent assay. Patients were classified as having coronary artery lesions (CALs) based on the maximal internal diameters of the proximal right coronary artery and proximal left anterior descending coronary artery one month after the initial diagnosis. Results: We found that FTLR2% greater than 92.62% predicted CALs with 80% sensitivity and 68.4% specificity, whereas FTLR2% more than 94.61% predicted IVIG resistance with 66.7% sensitivity and 71.4% specificity. Moreover, sIL-10 more than 15.52 pg/mL predicted CALs and IVIG resistance with 40% and 66.7% sensitivity, respectively, and 73.7% and 76.2% specificity, respectively. Conclusion: We showed that measuring FTLR2% before the initial treatment could be useful in predicting CAL development with better sensitivity than sIL-10 and with results comparable to sIL-10 results for the prediction of IVIG resistance in patients with KD. However, further studies are necessary to validate FTLR2% as a marker of prognosis and severity of KD.

Triptolide Suppresses the Expression of Cyclooxygenase-2 Induced by Toll-Like Receptor 3 and 4 Agonists

  • Gu, Gyo-Jeong;Eom, Sang-Hoon;Min, In Soon;Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.112-117
    • /
    • 2013
  • Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) and regulate the activation of innate immunity. All TLR signaling pathways culminate in the activation of NF-${\kappa}B$, leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Triptolide (TP), a natural component of Tripterygium wilfordii Hook. F, has been used as folk remedies to treat many chronic diseases for many years. In the present report, we present biochemical evidence that TP inhibits the NF-${\kappa}B$ activation induced by polyriboinosinic polyribocytidylic acid (Poly[I:C], TLR3 agonist) and lipopolysaccharide (LPS, TLR4 agonist). TP also inhibits COX-2 expression induced by Poly[I:C] and LPS. These results suggest that TP can modulate the immune responses regulated by TLR3 and TLR4 signaling pathways.

Parthenolide Suppresses the Expression of Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Induced by Toll-Like Receptor 2 and 4 Agonists

  • Lee, A-Neum;Park, Se-Jeong;Yun, Sae-Mi;Lee, Mi-Young;Son, Bu-Soon;Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • Toll-like receptors (TLRs), which are pattern recognition receptors (PRRs), recognize pathogen-associated molecular patterns (PAMPs) and regulate the activation of innate immunity. All TLR signaling pathways culminate in the activation of NF-${\kappa}B$, leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Parthenolide, a sesquiterpene lactone isolated from the herb feverfew (Tanacetum parthenium), has been used as folk remedies to treat many chronic diseases for many years. In the present report, we present biochemical evidence that parthenolide inhibits the NF-${\kappa}B$ activation induced by TLR agonists and the overexpression of downstream signaling components of TLRs, MyD88, $IKK{\beta}$, and p65. Parthenolide also inhibits TLR agonists-induced COX-2 and iNOS expression. These results suggest that parthenolide can modulate the immune responses regulated by TLR signaling pathways.

Berberine Prevents Intestinal Mucosal Barrier Damage During Early Phase of Sepsis in Rat through the Toll-Like Receptors Signaling Pathway

  • Li, Guo-Xun;Wang, Xi-Mo;Jiang, Tao;Gong, Jian-Feng;Niu, Ling-Ying;Li, Ning
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Our previous study has shown berberine prevents damage to the intestinal mucosal barrier during early phase of sepsis in rat through mechanisms independent of the NOD-like receptors signaling pathway. In this study, we explored the regulatory effects of berberine on Toll-like receptors during the intestinal mucosal damaging process in rats. Male Sprague-Dawlay (SD) rats were treated with berberine for 5 d before undergoing cecal ligation and puncture (CLP) to induce polymicrobial sepsis. The expression of Toll-like receptor 2 (TLR 2), TLR 4, TLR 9, the activity of nuclear factor-kappa B ($NF-{\kappa}B$), the levels of selected cytokines and chemokines, percentage of cell death in intestinal epithelial cells, and mucosal permeability were investigated at 0, 2, 6, 12 and 24 h after CLP. Results showed that the tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) level were significantly lower in berberine-treated rats compared to the control animals. Conversely, the expression level of tight junction proteins, percentage of cell death in intestinal epithelial cells and the mucosal permeability were significantly higher in berberine-treated rats. The mRNA expression of TLR 2, TLR 4, and TLR 9 were significantly affected by berberine treatment. Our results indicate that pretreatment with berberine attenuates tissue injury and protects the intestinal mucosal barrier in early phase of sepsis and this may possibly have been mediated through the TLRs pathway.

Pneumococcal Δpep27 Immunization Attenuates TLRs and NLRP3 Expression and Relieves Murine Ovalbumin-Induced Allergic Rhinitis

  • Yu, Jae Ik;Kim, Ji-Hoon;Nam, Ki-El;Lee, Wonsik;Rhee, Dong-Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.709-717
    • /
    • 2022
  • Allergic rhinitis (AR), one of the most common inflammatory diseases, is caused by immunoglobulin E (IgE)-mediated reactions against inhaled allergens. AR involves mucosal inflammation driven by type 2 helper T (Th2) cells. Previously, it was shown that the Streptococcus pneumoniae pep27 mutant (Δpep27) could prevent and treat allergic asthma by reducing Th2 responses. However, the underlying mechanism of Δpep27 immunization in AR remains undetermined. Here, we investigated the role of Δpep27 immunization in the development and progression of AR and elucidated potential mechanisms. In an ovalbumin (OVA)-induced AR mice model, Δpep27 alleviated allergic symptoms (frequency of sneezing and rubbing) and reduced TLR2 and TLR4 expression, Th2 cytokines, and eosinophil infiltration in the nasal mucosa. Mechanistically, Δpep27 reduced the activation of the NLRP3 inflammasome in the nasal mucosa by down-regulating the Toll-like receptor signaling pathway. In conclusion, Δpep27 seems to alleviate TLR signaling and NLRP3 inflammasome activation to subsequently prevent AR.

Reactive Oxygen Species-Induced Expression of B cell Activating Factor (BAFF) Is Independent of Toll-like Receptor 4 and Myeloid Differentiation Primary Response Gene 88

  • Kim, Hyun-Sun;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.144-150
    • /
    • 2009
  • Reactive oxygen species play a role in signal transduction and in many human diseases. B-cell activating factor (BAFF) plays a role for mature B cell generation and maintenance and for the incidence of autoimmune diseases. We previously reported that BAFF expression was induced by ROS. In this study, we investigated whether ROS-induced BAFF expression was affected by toll-like receptor (TLR) 4 or myeloid differentiation primary response gene (MyD) 88. BAFF expression was increased by serum deprivation that is an experimental modification to produce ROS. In contrast, TLR4 and MyD88 were decreased by serum deprivation. Although ROS production was decreased in TLR4-nonfunctional or MyD88-deficient splenocytes as compared to that in control mice, serum deprivation increased ROS production and augmented BAFF expression in both cells. $50{\mu}M\;H_2O_2$ also increased BAFF expression in TLR4-deficient or MyD88-deficient splenocytes. Collectively, results show that BAFF expression may be mediated by TLR4 or MyD88-independent manner and TLR4 or MyD88 may not be required in BAFF expression.

Genomic DNA Extracted from Lactiplantibacillus plantarum Attenuates Porphyromonas gingivalis Lipopolysaccharide (LPS)-Induced Inflammatory Responses via Suppression of Toll-Like Receptor (TLR)-Mediated Mitogen-Activated Protein Kinase (MAPK) and Nuclear Factor-κB (NF-κB) Signaling Pathways

  • Young Hyeon Choi;Bong Sun Kim;Seok-Seong Kang
    • Food Science of Animal Resources
    • /
    • v.43 no.5
    • /
    • pp.938-947
    • /
    • 2023
  • In the present study, we aimed to examine the inhibition of genomic DNA from Lactiplantibacillus plantarum (LpDNA) on Porphyromonas gingivalis lipopolysaccharide (PgLPS)-induced inflammatory responses in RAW264.7 cells. Pretreatment with LpDNA for 15 h significantly inhibited PgLPS-induced mRNA expression and protein secretion of interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein-1. LpDNA pretreatment also reduced the mRNA expression of Toll-like receptor (TLR)2 and TLR4. Furthermore, LpDNA inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and the activation of nuclear factor-κB (NF-κB) induced by PgLPS. Taken together, these findings demonstrate that LpDNA attenuates PgLPS-induced inflammatory responses by regulating MAPKs and NF-κB signaling pathways through the suppression of TLR2 and TLR4 expression.

Regulation of toll-like receptors expression in muscle cells by exercise-induced stress

  • Park, Jeong-Woong;Kim, Kyung-Hwan;Choi, Joong-Kook;Park, Tae Sub;Song, Ki-Duk;Cho, Byung-Wook
    • Animal Bioscience
    • /
    • v.34 no.10
    • /
    • pp.1590-1599
    • /
    • 2021
  • Objective: This study investigates the expression patterns of toll-like receptors (TLRs) and intracellular mediators in horse muscle cells after exercise, and the relationship between TLRS expression in stressed horse muscle cells and immune cell migration toward them. Methods: The expression patterns of the TLRs (TLR2, TLR4, and TLR8) and downstream signaling pathway-related genes (myeloid differentiation primary response 88 [MYD88]; activating transcription factor 3 [ATF3]) are examined in horse tissues, and horse peripheral blood mononuclear cells (PBMCs), polymorphonuclear cells (PMNs) and muscles in response to exercise, using the quantitative reverse transcription-polymerase chain reaction (qPCR). Expressions of chemokine receptor genes, i.e., C-X-C motif chemokine receptor 2 (CXCR2) and C-C motif chemokine receptor 5 (CCR5), are studied in PBMCs and PMNs. A horse muscle cell line is developed by transfecting SV-T antigen into fetal muscle cells, followed by examination of muscle-specific genes. Horse muscle cells are treated with stressors, i.e., cortisol, hydrogen peroxide (H2O2), and heat, to mimic stress conditions in vitro, and the expression of TLR4 and TLR8 are examined in stressed muscle cells, in addition to migration activity of PBMCs toward stressed muscle cells. Results: The qPCR revealed that TLR4 message was expressed in cerebrum, cerebellum, thymus, lung, liver, kidney, and muscle, whereas TLR8 expressed in thymus, lung, and kidney, while TLR2 expressed in thymus, lung, and kidney. Expressions of TLRs, i.e., TLR4 and TLR8, and mediators, i.e., MYD88 and ATF3, were upregulated in muscle, PBMCs and PMNs in response to exercise. Expressions of CXCR2 and CCR5 were also upregulated in PBMCs and PMNs after exercise. In the muscle cell line, TLR4 and TLR8 expressions were upregulated when cells were treated with stressors such as cortisol, H2O2, and heat. Migration of PBMCs toward stressed muscle cells was increased by exercise and oxidative stresses, and combinations of these. Treatment with methylsulfonylmethane (MSM), an antioxidant on stressed muscle cells, reduced migration of PBMCs toward stressed muscle cells. Conclusion: In this study, we have successfully cultured horse skeletal muscle cells, isolated horse PBMCs, and established an in vitro system for studying stress-related gene expressions and function. Expression of TLR4, TLR8, CXCR2, and CCR5 in horse muscle cells was higher in response to stressors such as cortisol, H2O2, and heat, or combinations of these. In addition, migration of PBMCs toward muscle cells was increased when muscle cells were under stress, but inhibition of reactive oxygen species by MSM modulated migratory activity of PBMCs to stressed muscle cells. Further study is necessary to investigate the biological function(s) of the TLR gene family in horse muscle cells.