Acknowledgement
This work was supported by the National Research Foundation grant (NRF-2018R1A2A1A05078102) and the Technology development Program of MSS (S3201794). The funding body played no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.
References
- Small P, Keith PK, Kim H. 2018. Allergic rhinitis. Allergy Asthma Clin. Immunol. 14: 51. https://doi.org/10.1186/s13223-018-0280-7
- Stuck BA, Czajkowski J, Hagner AE, Klimek L, Verse T, Hormann K, et al. 2004. Changes in daytime sleepiness, quality of life, and objective sleep patterns in seasonal allergic rhinitis: a controlled clinical trial. J. Allergy Clin. Immunol. 113: 663-668. https://doi.org/10.1016/j.jaci.2003.12.589
- Bauchau V, Durham SR. 2005. Epidemiological characterization of the intermittent and persistent types of allergic rhinitis. Allergy 60: 350-353. https://doi.org/10.1111/j.1398-9995.2005.00751.x
- Ha J, Lee SW, Yon DK. 2020. Ten-year trends and prevalence of asthma, allergic rhinitis, and atopic dermatitis among the Korean population, 2008-2017. Clin. Exp. Pediatr. 63:278-283. https://doi.org/10.3345/cep.2019.01291
- van de Veen W, Akdis M. 2019. The use of biologics for immune modulation in allergic disease. J. Clin. Invest. 129: 1452-1462. https://doi.org/10.1172/jci124607
- Dykewicz MS, Hamilos DL. 2010. Rhinitis and sinusitis. J. Allergy Clin. Immunol. 125: S103-115. https://doi.org/10.1016/j.jaci.2009.12.989
- Thorburn AN, Tseng HY, Donovan C, Hansbro NG, Jarnicki AG, Foster PS, et al. 2016. TLR2, TLR4 and MyD88 mediate allergic airway disease (AAD) and Streptococcus pneumoniae-induced suppression of AAD. PLoS One 11: e0156402. https://doi.org/10.1371/journal.pone.0156402
- Ryu JH, Yoo JY, Kim MJ, Hwang SG, Ahn KC, Ryu JC, et al. 2013. Distinct TLR-mediated pathways regulate house dust mite-induced allergic disease in the upper and lower airways. J. Allergy Clin. Immunol. 131: 549-561. https://doi.org/10.1016/j.jaci.2012.07.050
- Kim BG, Ghosh P, Ahn S, Rhee DK. 2019. Pneumococcal pep27 mutant immunization suppresses allergic asthma in mice. Biochem. Biophys. Res. Commun. 514: 210-216. https://doi.org/10.1016/j.bbrc.2019.04.116
- Lee S, Ghosh P, Kwon H, Park SS, Kim GL, Choi SY, et al. 2018. Induction of the pneumococcal vncRS operon by lactoferrin is essential for pneumonia. Virulence 9: 1562-1575. https://doi.org/10.1080/21505594.2018.1526529
- Kim EH, Choi SY, Kwon MK, Tran TD, Park SS, Lee KJ, et al. 2012. Streptococcus pneumoniae pep27 mutant as a live vaccine for serotype-independent protection in mice. Vaccine 30: 2008-2019. https://doi.org/10.1016/j.vaccine.2011.11.073
- Kim SH, Jang YS. 2017. The development of mucosal vaccines for both mucosal and systemic immune induction and the roles played by adjuvants. Clin. Exp. Vaccine Res. 6: 15-21. https://doi.org/10.7774/cevr.2017.6.1.15
- Giudice EL, Campbell JD. 2006. Needle-free vaccine delivery. Adv. Drug Deliv. Rev. 58: 68-89. https://doi.org/10.1016/j.addr.2005.12.003
- Kersten G, Hirschberg H. 2007. Needle-free vaccine delivery. Expert. Opin. Drug Deliv. 4: 459-474. https://doi.org/10.1517/17425247.4.5.459
- Seon SH, Choi JA, Yang E, Pyo S, Song MK, Rhee DK. 2018. Intranasal immunization with an attenuated pep27 mutant provides protection from influenza virus and secondary pneumococcal infections. J. Infect. Dis. 217: 637-640. https://doi.org/10.1093/infdis/jix594
- Bousquet J, Van Cauwenberge P, Khaltaev N; Aria Workshop Group; World Health Organization. et al. 2001. Allergic rhinitis and its impact on asthma. J. Allergy Clin. Immunol. 108: S147-334. https://doi.org/10.1067/mai.2001.118891
- Durham SR, Ying S, Varney VA, Jacobson MR, Sudderick RM, Mackay IS, et al. 1992. Cytokine messenger RNA expression for IL-3, IL-4, IL-5, and granulocyte/macrophage-colony-stimulating factor in the nasal mucosa after local allergen provocation: relationship to tissue eosinophilia. J. Immunol. 148: 2390-2394. https://doi.org/10.4049/jimmunol.148.8.2390
- Fransson M, Adner M, Erjefalt J, Jansson L, Uddman R, Cardell LO. 2005. Up-regulation of Toll-like receptors 2, 3 and 4 in allergic rhinitis. Respir. Res. 6: 100. https://doi.org/10.1186/1465-9921-6-100
- Zhong Q, Zhan M, Wang L, Chen D, Zhao N, Wang J, et al. 2021. Upregulation of the expression of Toll-like receptor 9 in basophils in patients with allergic rhinitis: An enhanced expression by allergens. Scand. J. Immunol. 93: e13003.
- Kirtland ME, Tsitoura DC, Durham SR, Shamji MH. 2020. Toll-like receptor agonists as adjuvants for allergen immunotherapy. Front. Immunol. 11:599083. https://doi.org/10.3389/fimmu.2020.599083
- Yang Z, Liang C, Wang T, Zou Q, Zhou M, Cheng Y, et al. 2020. NLRP3 inflammasome activation promotes the development of allergic rhinitis via epithelium pyroptosis. Biochem. Biophys. Res. Commun. 522: 61-67. https://doi.org/10.1016/j.bbrc.2019.11.031
- Zhang W, Ba G, Tang R, Li M, Lin H. 2020. Ameliorative effect of selective NLRP3 inflammasome inhibitor MCC950 in an ovalbumin-induced allergic rhinitis murine model. Int. Immunopharmacol. 83: 106394. https://doi.org/10.1016/j.intimp.2020.106394
- Annunziato F, Romagnani C, Romagnani S. 2015. The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol. 135: 626-635. https://doi.org/10.1016/j.jaci.2014.11.001
- Gour N, Wills-Karp M. 2015. IL-4 and IL-13 signaling in allergic airway disease. Cytokine 75: 68-78. https://doi.org/10.1016/j.cyto.2015.05.014
- Greenfeder S, Umland SP, Cuss FM, Chapman RW, Egan RW. 2001. Th2 cytokines and asthma. The role of interleukin-5 in allergic eosinophilic disease. Respir. Res. 2: 71-79. https://doi.org/10.1186/rr41
- Aryan Z, Holgate ST, Radzioch D, Rezaei N. 2014. A new era of targeting the ancient gatekeepers of the immune system: Toll-like agonists in the treatment of allergic rhinitis and asthma. Int. Arch. Allergy Immunol. 164: 46-63. https://doi.org/10.1159/000362553
- Xu H, Shu H, Zhu J, Song J. 2019. Inhibition of TLR4 inhibits allergic responses in murine allergic rhinitis by regulating the NF-κB pathway. Exp. Ther. Med. 18: 761-768.
- Zhao CC, Xie QM, Xu J, Yan XB, Fan XY, Wu HM. 2020. TLR9 mediates the activation of NLRP3 inflammasome and oxidative stress in murine allergic airway inflammation. Mol. Immunol. 125: 24-31. https://doi.org/10.1016/j.molimm.2020.06.016
- Velasco G, Campo M, Manrique OJ, Bellou A, He HZ, Arestides RSS, et al. 2005. Toll-like receptor 4 or 2 agonists decrease allergic inflammation. Am. J. Resp. Cell Mol. 32: 218-224. https://doi.org/10.1165/rcmb.2003-0435OC
- Starkhammar M, Larsson O, Georen SK, Leino M, Dahlen SE, Adner M, et al. 2014. Toll-like receptor ligands LPS and poly (I:C) exacerbate airway hyperresponsiveness in a model of airway allergy in mice, independently of inflammation. PLoS One 9:e104114. https://doi.org/10.1371/journal.pone.0104114
- Gupta GK, Agrawal DK. 2010. CpG oligodeoxynucleotides as TLR9 agonists therapeutic application in allergy and asthma. BioDrugs 24: 225-235. https://doi.org/10.2165/11536140-000000000-00000
- Aryan Z, Rezaei N. 2015. Toll-like receptors as targets for allergen immunotherapy. Curr. Opin. Allergy Clin. Immunol. 15: 568-574. https://doi.org/10.1097/ACI.0000000000000212
- Hayashi T, Raz E. 2006. TLR9-based immunotherapy for allergic disease. Am. J. Med. 119: 897.e1-6. https://doi.org/10.1016/j.amjmed.2005.12.028
- Horak F. 2011. VTX-1463, a novel TLR8 agonist for the treatment of allergic rhinitis. Expert Opin. Inv. Drug. 20: 981-986. https://doi.org/10.1517/13543784.2011.583237
- Schroder NW, Morath S, Alexander C, Hamann L, Hartung T, Zahringer U, et al. 2003. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J. Biol. Chem. 278: 15587-15594. https://doi.org/10.1074/jbc.M212829200
- Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D. 1999. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163: 1-5. https://doi.org/10.4049/jimmunol.163.1.1
- Goodridge HS, McGuiness S, Houston KM, Egan CA, Al-Riyami L, Alcocer MJ, et al. 2007. Phosphorylcholine mimics the effects of ES-62 on macrophages and dendritic cells. Parasite Immunol. 29: 127-137. https://doi.org/10.1111/j.1365-3024.2006.00926.x
- Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M, Thompson CM, et al. 2003. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc. Natl. Acad. Sci. USA 100: 1966-1971. https://doi.org/10.1073/pnas.0435928100
- Kim BY, Shin JH, Park HR, Kim SW, Kim SW. 2013. Comparison of antiallergic effects of pneumococcal conjugate vaccine and pneumococcal polysaccharide vaccine in a murine model of allergic rhinitis. Laryngoscope 123: 2371-2377. https://doi.org/10.1002/lary.24047
- Sutterwala FS, Haasken S, Cassel SL. 2014. Mechanism of NLRP3 inflammasome activation. Ann. NY Acad. Sci. 1319: 82-95. https://doi.org/10.1111/nyas.12458
- Swanson KV, Deng M, Ting JP. 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19: 477-489. https://doi.org/10.1038/s41577-019-0165-0
- Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, et al. 2009. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183: 787-791. https://doi.org/10.4049/jimmunol.0901363
- Boucher D, Monteleone M, Coll RC, Chen KW, Ross CM, Teo JL, et al. 2018. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J. Exp. Med. 215: 827-840. https://doi.org/10.1084/jem.20172222
- Paul WE, Zhu J. 2010. How are T(H)2-type immune responses initiated and amplified? Nat. Rev. Immunol. 10: 225-235. https://doi.org/10.1038/nri2735
- Caucheteux SM, Hu-Li J, Guo L, Bhattacharyya N, Crank M, Collins MT, et al. 2016. IL-1β enhances inflammatory TH2 differentiation. J. Allergy Clin. Immunol. 138: 898-901.e4. https://doi.org/10.1016/j.jaci.2016.02.033
- Chen CY, Kao CL, Liu CM. 2018. The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the TLR4 signaling pathway. Int. J. Mol. Sci. 19: 2729. https://doi.org/10.3390/ijms19092729