• Title/Summary/Keyword: Toll-Like Receptor 4

Search Result 221, Processing Time 0.031 seconds

Toll-like Receptor 4-mediated Apoptotic Cell Death in Primary Isolated Human Cervical Cancers (부인과질환 특이적 종양의 TLR4 매개성 apoptosis 유발에 관한 연구)

  • Won, Jinyoung;Hong, Yunkyung;Park, Sookyoung;Kim, Joo-Heon;Hong, Yonggeun
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.718-725
    • /
    • 2018
  • Toll-like receptor 4 (TLR4) has been implicated in cell proliferation and apoptosis in several types of cancer. In this study, the impact of TLR4 activation on apoptotic cell death in gynecologic cancers induced by lipopolysaccharide (LPS) was investigated. Cervical cancer cell lines were produced from isolated surgical specimens supplied by Paik Hospital. The primary cultures of normal myometrium and gynecologic cancers, including cervical, endometrial, and ovarian cancers, were used to examine the differences in morphological characteristics between normal and cancerous cells. A reverse transcription polymerase chain reaction analysis was used to determine the relative expression levels of TLR4 gene involved in apoptosis-associated signaling in cervical cancer cells. The cancer cell colonies showed a tendency to reach high levels of confluency compared with normal cells. In addition, an enhanced growth rate and loss of contact inhibition were observed in gynecologic cancer cells compared with normal cells (doubling times of 16.6 hr vs. 26 hr, respectively). The expression level of ITGA5, an alpha-5 integrin marker, was upregulated in normal myometrial cells, but this tendency was not exhibited in cervical cancer cells. Furthermore, p53 tumor suppressor gene expression was upregulated, whereas TLR4 and caspase-3 gene expressions were downregulated in cervical cancer cells. Notably, the expression levels of TLR4 and caspase-3 were increased significantly in LPS-treated cancer cells compared with those in non-LPS-treated cells. These results suggest that the TLR4-mediated caspase-dependent apoptotic signaling pathway could be suggested as a therapeutic target for the treatment of gynecologic cancers, including cervical cancers.

A preliminary study of the anti-inflammatory activities of the Japanese oak silk moth, Antheraea yamamai

  • Park, Seung-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.45 no.1
    • /
    • pp.17-21
    • /
    • 2022
  • The present study aimed to determine whether a hemolymph prepared from Antheraea yamamai larvae had the same biological activities using a Bombyx mori hemolymph prior to exposure to lipopolysaccharide (LPS) in order to induce an inflammatory response. The effects of the hemolymph were determined using a reverse transcription-quantitative polymerase chain reaction to assess the expression of pro-inflammatory molecules. The A. yamamai hemolymph exerted anti-inflammatory effects on LPS-activated human monocytic leukemia cells via Toll-like receptor (TLR) 4-mediated suppression, similar to the B. mori hemocyte extract. Treatment with the A. yamamai hemolymph significantly suppressed LPS-induced upregulated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expression at all tested concentrations compared with the control, similar to the B. mori immune-challenged hemolymph. Finally, the A. yamamai hemolymph, like the B. mori immune-challenged hemolymph, suppressed all of these concentrations in a dose-independent manner. These results demonstrate that the hemolymph of A. yamamai exhibited important biologically active substances. Further in-depth functional studies are required to fully understand the mechanisms underlying the biological activities of wild-type silkworm hemolymphs.

Lack of the Association between Microsatellite Polymorphism in Toll-like Receptor 2 Gene and Development of COPD (Toll-like Receptor 2 유전자의 Microsatellite 유전자 다형성과 만성폐쇄성폐질환 발생과의 연관성 결여)

  • Lee, Hee Seok;Lee, Hye Won;Kim, Deog Kyeom;Ko, Dong Seok;Park, Gun Min;Hwang, Yong Il;Lee, Sang-Min;Yoo, Chul Gyu;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yim, Jae-Joon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.4
    • /
    • pp.367-374
    • /
    • 2005
  • Background : The fact that only 10-20% of chronic cigarette smokers develop chronic obstructive pulmonary disease (COPD) reflects the presence of genetic factors associated with the susceptibility to COPD. Recently, it was reported that the surfactant protein A increases the secretion of matrix metalloprotease 9, which degrades extracellular matrices of the lung, through a Toll-like receptor 2 (TLR2). In this context, possible role of TLR2 in the pathogenesis of COPD was postulated, and a functional dinucleotide repeat polymorphism in intron II of TLR2 was evaluated for any association with COPD. Method : Male patients with COPD and male smokers with a normal pulmonary function were enrolled in this study. The number of Guanine-Thymine repeats in intron II of the TLR2 gene were counted. Because the distributions of the repeats were trimodal, the alleles were classified into three subclasses, 12-16 repeats: short (S) alleles; 17-22 repeats: medium length (M) alleles; and 23-27 repeats: long (L) alleles. Result : 125 male patients with COPD and 144 age- and gender-matched blood donors with a normal lung function were enrolled. There were no differences in the distribution of each allele subclass (S, M and L) between the COPD and control group (p=0.75). The frequencies of the genotypes with and without each allele subclass in the COPD and control group were similar. Conclusion : A microsatellite polymorphism in intron II of TLR2 gene was not associated with the development of COPD in Koreans.

Genomic Analyses of Toll-like Receptor 4 and 7 Exons of Bos indicus from Temperate Sub-himalayan Region of India

  • Malik, Y.P.S.;Chakravarti, S.;Sharma, K.;Vaid, N.;Rajak, K.K.;Balamurugan, V.;Biswas, S.K.;Mondal, B.;Kataria, R.S.;Singh, R.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.7
    • /
    • pp.1019-1025
    • /
    • 2011
  • Toll-like receptors (TLRs) play an important role in the recognition of invading pathogens and the modulation of innate immune responses in mammals. The TLR4 and TLR7 are well known to recognize the bacterial lipopolysaccharide (LPS) and single stranded (ssRNA) ligands, respectively and play important role in host defense against Gram-negative bacteria and ssRNA viruses. In the present study, coding exon fragments of these two TLRs were identified, cloned, sequenced and analyzed in terms of insertion-deletion polymorphism, within bovine TLRs 4 and 7, thereby facilitating future TLR signaling and association studies relevant to bovine innate immunity. Comparative sequence analysis of TLR 4 exons revealed that this gene is more variable, particularly the coding frame (E3P1), while other parts showed percent identity of 95.7% to 100% at nucleotide and amino acid level, respectivley with other Bos indicus and Bos taurus breeds from different parts of the world. In comparison to TLR4, sequence analysis of TLR7 showed more conservation among different B. indicus and B. taurus breeds, except single point mutation at 324 nucleotide position (AAA to AAM) altering a single amino acid at 108 position (K to X). Percent identity of TLR7 sequences (all 3 exons) was between 99.2% to 100% at nucleotide and amino acid level, when compared with available sequence database of B. indicus and B. taurus. Simple Modular Architecture Research Tool (SMART) analysis showed variations in the exon fragments located in the Leucine Rich Repeat (LRR) region, which is responsible for binding with the microbial associated molecular patterns and further, downstream signaling to initiate anti-microbial response. Considering importance of TLR polymorphism in terms of innate immunity, further research is warranted.

Immunomodulating Activity of Fungal $\beta$-Glucan through Dectin-1 and Toll-like Receptor on Murine Macrophage

  • Kim, Ha-Won
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2006.11a
    • /
    • pp.103-115
    • /
    • 2006
  • $\beta$-Glucan is a glucose polymer that has linkage of $\beta$-(1,3), -(1,4) and -(1,6). As exclusively found in fungal and bacterial cell wall, not in animal, $\beta$-glucans are recognized by innate immune system. Dendritic cells (DC) or macrophages possesses pattern recognition molecule (PRM) for binding $\beta$-glucan as pathogen-associated molecular pattern (PAMP). Recently $\beta$-glucan receptor was cloned from DC and named as dectin-l which belongs to type II C-type lectin family. Human dectin-1 is consisted of 7 exons and 6 introns. The polypeptide of dectin-1 has 247 amino acids and has cytoplasmic, transmembrane, stalk and carbohydrate recognition domains. Dectin-1 could recognize variety of beta-1,3 and/or beta-1,6 glucan linkages, but not alpha-glucans. In our macrophage cell line culture system, dectin-1 mRNA was detected in RA W264.7 cells by reverse transcription-polymerase chain reaction (RT-PCR). Dectin-1 was also detected in the murine organs of spleen, thymus, lung and intestines. Treatment of RA W264.7 cells with $\beta$-glucans of Ganoderma lucidum (GLG) resulted in increased expression of IL-6 and TNF-$\alpha$ in the presence of LPS. However, GLG alone did not increase IL-6 nor TNF-$\alpha$. These results suggest that receptor dectin-1 cooperate with CD14 to activate signal transduction that is very critical in immunoresponse.

  • PDF

Immunomodulating Activity of Fungal ${\beta}-Glucan$ through Dectin-1 and Toll-like Receptor on Murine Macrophage

  • Kim, Ha-Won
    • 한국약용작물학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.103-115
    • /
    • 2006
  • [ ${\beta}-Glucan$ ] is a glucose polymer that has linkage of ${\beta}-(1,3)$, -(1,4) and -(1,6). As exclusively found in fungal and bacterial cell wall, not in animal, ${\beta}-glucans$ are recognized by innate immune system. Dendritic cells (DC) or macrophages possesses pattern recognition molecule (PRM) for binding ${\beta}-glucans$ as pathogen-associated molecular pattern (PAMP). Recently ${\beta}-glucans$ receptor was cloned from DC and named as dectin-l which belongs to type II C-type lectin family. Human dectin-l is consisted of 7 exons and 6 introns. The polypeptide of dectin-l has 247 amino acids and has cytoplasmic, transmembrane, stalk and carbohydrate recognition domains. Dectin-l could recognize variety of beta-l,3 and/or beta-l,6 glucan linkages, but not alpha-glucans. In our macrophage cell line culture system, dectin-l mRNA was detected in RA W264.7 cells by reverse transcription-polymerase chain reaction (RT-PCR). Dectin-l was also detected in the murine organs of spleen, thymus, lung and intestines. Treatment of RA W264.7 cells with ${\beta}-glucans$ of Ganoderma lucidum (GLG) resulted in increased expression of IL-6 and $TNF-{\alpha}$ in the presence of LPS. However, GLG alone did not increase IL-6 nor $TNF-{\alpha}$ These results suggest that receptor dectin-l cooperate with CD14 to activate signal transduction that is very critical in immunoresponse.

  • PDF

The Effects of Phenethyl Isothiocyanate on Nuclear Factor-κB Activation and Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression Induced by Toll-like Receptor Agonists (Phenethyl Isothiocyanate가 Toll-like Receptor Agonists에 의해 유도된 Nuclear Factor-κB 활성과 Cyclooxygenase-2, Inducible Nitric Oxide Synthase 발현에 미치는 효과)

  • Kim, Soo-Jung;Park, Hye-Jeong;Shin, Hwa-Jeong;Kim, Ji-Soo;Ahn, Hee-Jin;Min, In-Soon;Youn, Hyung-Sun
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.4
    • /
    • pp.279-283
    • /
    • 2011
  • Toll-like receptors (TLRs) play an important role in induction of innate immune responses. The activation of TLRs triggers inflammatory responses that are essential for host defense against invading pathogens. Phenethyl isothiocyanate (PEITC) extracted from cruciferous vegetables has an effect on anti-inflammatory therapy. Dysregulated activation of nuclear factor-${\kappa}$B (NF-${\kappa}$B), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) has been shown to play important roles in the development of certain inflammatory disease. To evaluate the therapeutic potential of PEITC, NF-${\kappa}$B activation and COX-2 and iNOS expression induced by lipopolysaccharide (LPS, TLR4 agonist), polyinosinic-polycytidylic acid (Poly[I:C], TLR3 agonist), 2 kDa macrophageactivating lipopeptide (MALP-2, TLR2 and TLR6 agonist) or oligodeoxynucleotide 1668 (ODN1668, TLR9 agonist) were examined. PEITC inhibits the activation of NF-${\kappa}$B induced by LPS or Poly[I:C] but not by MALP-2 or ODN1668. PEITC also suppressed the iNOS expression induced by LPS or Poly[I:C]. However, PEITC did not suppress COX-2 expression induced by LPS, Poly[I:C], MALP-2, or ODN1668. These results suggest that PEITC has the specific mechanism for antiinflammatory responses.

Expression of Toll-like Receptors, Pro-, and Anti-inflammatory Cytokines in Relation to Gut Microbiota in Irritable Bowel Syndrome: The Evidence for Its Micro-organic Basis

  • Shukla, Ratnakar;Ghoshal, Ujjala;Ranjan, Prabhat;Ghoshal, Uday C
    • Journal of Neurogastroenterology and Motility
    • /
    • v.24 no.4
    • /
    • pp.628-642
    • /
    • 2018
  • Background/Aims A Subset of patients with irritable bowel syndrome (IBS) may have mild inflammation due to immune activation. Toll-like receptors (TLRs) and cytokines may cause intestinal inflammation. We studied their expression in relation to gut microbiota. Methods Expression of TLRs and cytokines was assessed in 47 IBS patients (Rome III) and 25 controls using quantitative real-time polymerase chain reaction. Immunohistochemistry was further performed to confirm the expression of TLR-4 and TLR-5. Results Of 47 patients with IBS, 20 had constipation (IBS-C), 20 diarrhea (IBS-D), and 7 unclassified (IBS-U). The mRNA levels of TLR-4 and TLR-5 were up-regulated in IBS patients than controls (P = 0.013 and P < 0.001, respectively). Expression of TLR-4 and TLR-5 at protein level was 4.2-folds and 6.6-folds higher in IBS-D than controls. The mRNA levels of IL-6 (P = 0.003), C-X-C motif chemokine ligand 11 (CXCL-11) (P < 0.001) and C-X-C motif chemokine receptor 3 (CXCR-3) (P < 0.001) were higher among IBS patients than controls. Expression of IL-6 (P = 0.002), CXCL-11 (P < 0.001), and CXCR-3 (P < 0.001) were up-regulated and IL-10 (P = 0.012) was down-regulated in IBS-D patients than controls. Positive correlation was seen between TLR-4 and IL-6 (P = 0.043), CXCR-3, and CXCL-11 (P = 0.047), and IL-6 and CXCR-3 (P = 0.003). Stool frequency per week showed positive correlation with mRNA levels of TLR-4 (P = 0.016) and CXCR-3 (P = 0.005), but inversely correlated with IL-10 (P = 0.002). Copy number of Lactobacillus (P = 0.045) and Bifidobacterium (P = 0.011) showed correlation with IL-10 in IBS-C, while Gram-positive (P = 0.031) and Gram-negative bacteria (P = 0.010) showed correlation with CXCL-11 in IBS-D patients. Conclusions Altered immune activation in response to dysbiotic microbiota may promote intestinal inflammation in a subset of patients with IBS.

Immuno-Enhancing Effects through Macrophages of Polysaccharides Isolated from Citrus Peels (진피로부터 분리한 다당의 대식세포를 통한 면역증진 효과)

  • Lee, Kyung-Ae;Park, Hye-Ryung
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.5
    • /
    • pp.441-448
    • /
    • 2021
  • This study was designed to investigate the intracellular signaling pathways and immunoenhancing effect of macrophage activation by crude polysaccharides (CPP) extracted from citrus peels. CPP did not affect the cytotoxicity of RAW264.7 cells, but showed dose-dependent effects on cell viability. Also, CPP showed high production of chemokine (nitric oxide (NO)) and cytokines (interleukin (IL)-6 and tumor necrosis factor (TNF)-α). CPP increased IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) mRNA expression dose-dependently. CPP also strongly induced the phosphorylation of the ERK, p38, and IκBα pathways in RAW 264.7 cells. In anti-pattern recognition receptors (PRRs) experiments, the effect of CPP on NO production was strongly suppressed by neutralizing toll-like receptor (TLR)2, TLR4, and Dectin1 antibodies, whereas IL-6 and TNF-α production by CPP was mainly suppressed by mannose receptor (MR). Therefore, these results suggest that CPP treatment-induced NO production was regulated by the ERK, p38, and NF-κB pathways through TLR2, TLR4, and Dectin1 receptors, whereas IL-6 and TNF-α production was primarily regulated by the ERK, p38, and NF-κB pathways through MR receptors.

The Early Induction of Suppressor of Cytokine Signaling 1 and the Downregulation of Toll-like Receptors 7 and 9 Induce Tolerance in Costimulated Macrophages

  • Lee, Hyo-Ji;Kim, Keun-Cheol;Han, Jeong A;Choi, Sun Shim;Jung, Yu-Jin
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.26-32
    • /
    • 2015
  • Toll-like receptors (TLR) 7 and 9 transduce a cellular signal through the MyD88-dependent pathway and induce the production of inflammatory mediators against microbial nucleotide components. The repeated stimulation of TLR4 leads to endotoxin tolerance, but the molecular mechanisms of tolerance induced through the costimulation of individual TLR has not yet been established, although endosomal TLRs share signaling pathways with TLR4. In the present study, mouse macrophages were simultaneously stimulated with the TLR7 agonist, gardiquimod (GDQ), and the TLR9 agonist, CpG ODN 1826, to examine the mechanism and effector functions of macrophage tolerance. Compared with individual stimulation, the costimulation of both TLRs reduced the secretion of TNF-${\alpha}$ and IL-6 through the delayed activation of the NF-${\kappa}B$ pathway; notably, IL-10 remained unchanged in costimulated macrophages. This tolerance reflected the early induction of suppressor of cytokine signaling-1 (SOCS-1), according to the detection of elevated TNF-${\alpha}$ secretion and restored NF-${\kappa}B$ signaling in response to the siRNA-mediated abrogation of SOCS-1 signaling. In addition, the restimulation of each TLRs using the same ligand significantly reduced the expression of both TLRs in endosomes. These findings revealed that the costimulation of TLR7 and TLR9 induced macrophage tolerance via SOCS-1, and the restimulation of each receptor or both TLR7 and TLR9 downregulated TLR expression through a negative feedback mechanisms that protects the host from excessive inflammatory responses. Moreover, the insufficient and impaired immune response in chronic viral infection might also reflect the repeated and simultaneous stimulation of those endosomal TLRs.