• Title/Summary/Keyword: Tolerant control, Open

Search Result 34, Processing Time 0.025 seconds

Fault Tolerant Control Methods for Dual Type Independent Multi-Phase BLDC Motor under the Open-Switch Fault Conditions

  • Kim, Yong-Hyu;Heo, Hong-Jun;Park, June-Ho;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.722-732
    • /
    • 2018
  • Dual type Independent multi-phase BLDC Motor (DI-BLDCM) is designed to be robust to faulty conditions of motor and drive system. Despite the efforts of the motor design, open-switch faults of DI-BLDCM drive system cause the torque ripple of the motor. This torque ripple makes unwanted sound noise and mechanical vibration of associated systems. This paper proposes four methods for compensating the torque ripple and compares the characteristics of each proposed method. All proposed methods are able to reduce the torque ripple to similar level of the healthy condition, although the motor operates in open-switch fault conditions. However, these methods have different characteristics in various fault conditions. Therefore, from the results of the comparison, the suitable method is selected for the various fault conditions. The feasibility of the proposed methods is proved by the several experimental results.

Position Sensorless Control of PMSM Drive for Electro-Hydraulic Brake Systems

  • Yoo, Seungjin;Son, Yeongrack;Ha, Jung-Ik;Park, Cheol-Gyu;You, Seung-Han
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.23-32
    • /
    • 2019
  • This study proposed a fault tolerant control algorithm for electro-hydraulic brake systems where permanent magnet synchronous motor (PMSM) drive is adopted to boost the braking pressure. To cope with motor position sensor faults in the PMSM drive, a braking pressure controller based on an open-loop speed control method for the PMSM was proposed. The magnitude of the current vector was determined from the target braking pressure, and motor rotational speed was derived from the pressure control error to build up the braking pressure. The position offset of the pump piston resulting from a leak in the hydraulic system is also compensated for using the open-loop speed control by moving the piston backward until it is blocked at the end of stroke position. The performance and stability of the proposed controller were experimentally verified. According to the results, the control algorithm can be utilized as an effective means of degraded control for electro-hydraulic brake systems in the case that a motor position sensor fault occurs.

A study on the implementation of the fault-tolerant digital filter using self-checking pulse rate residue arithmetic circuits. (자기검사(自己檢査) 펄스열(列) 잉여수연산회로(剩餘數演算回路)를 이용한 폴트 토러런트 디지탈 필타의 구성(構成)에 관한 연구(硏究))

  • Kim, Moon-Soo;Chun, Koo-Chae
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1185-1187
    • /
    • 1987
  • Digital systems are increasingly being used in the ranges of many control engineering. The residue number system offers the possibility of high speed operation and error correction. The compact self-checking pulse-train residue arithmetic circuit is proposed. A fault tolerant digital filter is practically implemented using these proposed circuits.

  • PDF

A Study on the Fault Tolerance and High Efficiency Control of 4 Leg DC/DC Converter for Battery Energy Storage System in Standalone DC Micro-grid (독립형 DC마이크로그리드 내 BESS용 4 LEG DC/DC 컨버터의 고장허용 및 고효율 제어에 관한 연구)

  • Choi, Jung-Sik;Oh, Seung-Yeol;Cha, Dae-Seak;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1239-1248
    • /
    • 2018
  • This paper proposes a fault tolerant and high efficiency operation algorithm for a 4 LEG DC/DC converter for a battery energy storage system(BESS) forming a main power source in a standalone DC micro grid. The BESS for the main power supply in the stand-alone DC micro-grid is required to operate at high speed according to fault tolerant control and load by operating at all times. Fault-tolerance control changes the short-circuit fault to an open-circuit fault by using a fuse in case of leg fault in 4 legs, and operates stably through phase shift control. In addition, considering the loss of the power semiconductor, the number of LEG operation is adjusted to operate at high efficiency in the full load region. In this paper, fault tolerant control and high efficiency operation algorithm of DC/DC converter for BESS in standalone DC micro grid is presented and it is proved through simulation and experiment.

Low-Cost Fault Diagnosis Algorithm for Switch Open-Damage in BLDC Motor Drives

  • Park, Byoung-Gun;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.702-708
    • /
    • 2010
  • In this paper, a fault diagnosis algorithm for brushless DC (BLDC) motor drives is proposed to maintain control performance under switch open-damage. The proposed fault diagnosis algorithm consists of a simple algorithm using measured phase current information and it detects open-circuit faults based on the operating characteristic of BLDC motors. The proposed algorithm quickly recovers control performance due to its short detection time and its reconfiguration of the system topology. It can be embedded into existing BLDC drive software as a subroutine without additional sensors. The feasibility of the proposed fault diagnosis algorithm is proven by simulation and experimental results.

A Novel Fault Detection Method of Open-Fault in NPC Inverter System (NPC 인버터의 개방성 고장에 대한 새로운 고장 검출 방법)

  • Lee, Jae-Chul;Kim, Tae-Jin;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2007
  • In this paper, a novel fault detection method for fault tolerant control is proposed when the NPC inverter has a open failure in the switching device. The open fault of switching device is detected by checking the variation of a leg-voltage in the neutral-point-clamped inverter and the two phases control method is used for continuously balance the three phases voltage to the load. It can be achieve the fault tolerant control for improving the reliability of the NPC inverter by the fault detection and reconfiguration. This method has fast detection ability and a simple realization for fault detection, compared with a conventional method. Also, this fast detection ability improved the harmful effects such as DC-link voltage unbalance and overstress to other switching devices from a delay of fault detection. The proposed method has been verified by simulation and experiment.

Fault Tolerance Operation and Characteristics Analysis of Asymmetric Six-phase Permanent Magnet Synchronous Motor According to Switch Open (비대칭 6상 영구자석 동기 전동기의 스위치 개방에 따른 특성 분석 및 고장허용운전)

  • Jun, So-Young;Hwang, Seon-Hwan;Park, Jong-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1003-1008
    • /
    • 2022
  • This paper proposes a method related to fault tolerance operation and characteristic analysis of asymmetric 6-phase permanent magnet synchronous motor. In general, motor drive systems with multi-phase structures can be continuously operated despite a reduction of power and speed by using a phase changeover or control techniques according to the failures. As a result, it is widely used in industrial fields such as aviation and defense, which require high efficiency and high reliability. In this paper, the second order ripple of the electrical fundamental freuqnecy occurs in the dq-axis currents of the synchronous coordinate system through mathematical analysis according to the switch open of the dual 3-phase inverter. Therefore, the fault tolerant operation method is presented by applying the fault detection method with a constant cycle for continuous operations. The effectiveness of the proposed fault tolerance operation method is verified through the several experiments.

A Study on Automatic Control Systems for Seawater Desalination Plants (해수 담수화 플랜트 제어 시스템 구성 방안 연구)

  • Ju, Young-Duk;Kim, Kyeong-Beom;Kim, Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.3-9
    • /
    • 2008
  • Recently, the plant industries are being activated and plant control systems use various technologies. Because the optimized design for the plants is very important for the reducing of operation and maintenance costs, automatic control systems become more important. Plant control systems consist of the master controller, the plant networks, the programming environment for engineering, monitoring software and the field devices. The control systems should have reliability, availability and safety. Modular architecture of hardware and software makes flexible configuration of the control systems. Each component should have diagnostic functions. It follows industrial standards and makes open systems. Open systems increase accessibility against the data which is distributed in the plants. The controllers including processor and communication modules use the up-to-date technology. They have real time and fault tolerant function by duplicating processors or networks. It also enables to make the distributed control systems. The distributed architecture makes more scalable main control system. Automatic control systems can be operated with better performance. In this paper, we analyzed the requirements of the seawater desalination plants and made some consideration facts for developing the optimized controller. Also we described the design concept of the main controller, which consists of several modules. We should validate and complement the design for the reliability and better performance.

  • PDF

Investigation of Fault-Mode Behaviors of Matrix Converters

  • Kwak, Sang-Shin
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.949-959
    • /
    • 2009
  • This paper presents a systematic investigation of the fault-mode behaviors of matrix converter systems. Knowledge about converter behaviors after fault occurrence is important from the standpoint of reliable system design, protection and fault-tolerant control. Converter behaviors have been, in detail, examined with both qualitative and quantitative approaches for key fault types, such as switch open-circuited faults and switch short-circuited faults. Investigating the fault-mode behaviors of matrix converters reveals that converter operation with switch short-circuited faults leads to overvoltage stresses as well as overcurrent stresses on other healthy switching components. On the other hand, switch open-circuited faults only result in overvoltage to other switching components. This study can be used to predict fault-mode converter behaviors and determine additional stresses on remaining power circuit components under fault-mode operations.

Torque Ripple Reduction Method With Enhanced Efficiency of Multi-phase BLDC Motor Drive Systems Under Open Fault Conditions (다상 BLDC 모터 드라이브 시스템의 개방 고장 시 효율 향상이 고려된 토크 리플 저감 대책)

  • Kim, Tae-Yun;Suh, Yong-Sug;Park, Hyeon-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.33-39
    • /
    • 2022
  • A multi-phase brushless direct current (BLDC) motor is widely used in large-capacity electric propulsion systems such as submarines and electric ships. In particular, in the field of military submarines, the polyphaser motor must suppress torque ripple in various failure situations to reduce noise and ensure stable operation for a long time. In this paper, we propose a polyphaser current control method that can improve efficiency and reduce torque ripple by minimizing the increase in stator winding loss at maximum output torque by controlling the phase angle and amplitude of the steady-state current during open circuit failure of the stator winding. The proposed control method controls the magnitude and phase angle of the healthy phase current, excluding the faulty phase, to compensate for the torque ripple that occurs in the case of a phase open failure of the motor. The magnitude and phase angle of the controlled steady-state current are calculated for each phase so that copper loss increase is minimized. The proposed control method was verified using hardware-in-the-loop simulation (HILS) of a 12-phase BLDC motor. HILS verification confirmed that the increase in the loss of the stator winding and the magnitude of the torque ripple decreased compared with the open phase fault of the motor.