• 제목/요약/키워드: Tolerance error

검색결과 403건 처리시간 0.027초

UHF대역 RFID 수신단(리더)의 지터(비트동기) 및 글리치 제거회로 설계 (Implementation of a Jitter and Glitch Removing Circuit for UHF RFID System Based on ISO/IEC 18000-6C Standard)

  • 김상훈;이용주;심재희;이용석
    • 한국통신학회논문지
    • /
    • 제32권1A호
    • /
    • pp.83-90
    • /
    • 2007
  • 본 논문에서는 ISO/IEC 18000-6C 표준안을 만족하는 UHF대역 RFID 수신단(리더)의 지터(Jitter)처리와 글리치제거 알고리듬 및 설계방안을 제안하고 이를 이용한 리더를 구현하여 실제 TI(Texas instrument) Gen2 태그의 응답을 분석하였다. ISO/IEC 18000-6C표준안은 Reader에서 Tag로 데이터 전송 시 +/-1%의 오차와 Tag에서 Reader로 데이터 전송 시 최대 +/-22%의 오차를 허용하도록 정의하고 있다. 이러한 허용오차범위 내의 데이터에 대해 본 논문에서 제시한 회로는 기존의 PLL(DPLL, ADPLL)을 이용한 방식이 아닌 최대허용치(tolerance)와 허용치누적을 이용하여 일정치의 오차범위를 허용하며 디코딩 하도록 설계하였다. 또한 글리치와 지터제거 알고리듬의 기본원리를 동일하게 구성하여 글리치제거와 지터제거를 따로 구분하지 않고 하나의 기능으로 동작하게 한다. 주 클럭은 19.2MHz로 설정하였으며 LF는 국내 전파법에 맞도록 40kHz로 설정하였다 시뮬레이션결과 15%이하의 위상지터를 가진 입력데이터에 대해 판독에러율은 0이었으며 $15%{\sim}22%$ 위상지터를 가진 입력데이터에 대해서 는 0.000589였다. 그러나 동적LF생성회로를 사용한 결과 $15%{\sim}22%$ 위상변화를 가진 입력데이터에 대해 판독에러율은 0이었으며 표준안에 정의된 최대 +/-22%오차 범위내의 지터 발생에 대해서 판독에러율은 0이었다.

멀티미디어 응용을 위한 수송 계층에서의 유연한 오류 제어 모델 (A flexible error control model in transport layer for multimedia application)

  • 박동성;이상헌;고봉홍;이재용;이상배
    • 한국통신학회논문지
    • /
    • 제21권4호
    • /
    • pp.911-925
    • /
    • 1996
  • 미래의 멀티미디어 응용 환경은 각 매체와 응용의 요구 사항들을 효율적으로 충족시킬 수 있는 유연한 오류 제어 모델을 필요로 하고 있으나, 지금까지의 오류 제어는 단일 매체를 처리하기 위한 제한된 유연성만이 제공되어왔다. 이를 해결하기 위하여 본 논문에서는 매체의 신뢰도 기준인 오류 허용률(ETL: Error Tolerance Level)과 응용의 실시간성 기준인 지연(Delay)을 고려하여 수송 계층에서 매체별로 유연하게 오류 제어 방법을 적용하는 모델을 제안한다. 이 모델에서는 매체별로 오류 제어 방법을 선정하기 위하여 오류 혀용률과 등시성과 같은 매체의 속성, 응용의 속성인 지연, 그리고 망에서의 데이터 손실율, 망의 전송 형태, 응용의 연결 모드와 같은 환경 파라미터가 영향 인자로써 고려되었다.

  • PDF

Chronological Switch from Translesion Synthesis to Homology-Dependent Gap Repair In Vivo

  • Fujii, Shingo;Isogawa, Asako;Fuchs, Robert P.
    • Toxicological Research
    • /
    • 제34권4호
    • /
    • pp.297-302
    • /
    • 2018
  • Cells are constantly exposed to endogenous and exogenous chemical and physical agents that damage their genome by forming DNA lesions. These lesions interfere with the normal functions of DNA such as transcription and replication, and need to be either repaired or tolerated. DNA lesions are accurately removed via various repair pathways. In contrast, tolerance mechanisms do not remove lesions but only allow replication to proceed despite the presence of unrepaired lesions. Cells possess two major tolerance strategies, namely translesion synthesis (TLS), which is an error-prone strategy and an accurate strategy based on homologous recombination (homology-dependent gap repair [HDGR]). Thus, the mutation frequency reflects the relative extent to which the two tolerance pathways operate in vivo. In the present paper, we review the present understanding of the mechanisms of TLS and HDGR and propose a novel and comprehensive view of the way both strategies interact and are regulated in vivo.

Probabilistic Soft Error Detection Based on Anomaly Speculation

  • Yoo, Joon-Hyuk
    • Journal of Information Processing Systems
    • /
    • 제7권3호
    • /
    • pp.435-446
    • /
    • 2011
  • Microprocessors are becoming increasingly vulnerable to soft errors due to the current trends of semiconductor technology scaling. Traditional redundant multi-threading architectures provide perfect fault tolerance by re-executing all the computations. However, such a full re-execution technique significantly increases the verification workload on the processor resources, resulting in severe performance degradation. This paper presents a pro-active verification management approach to mitigate the verification workload to increase its performance with a minimal effect on overall reliability. An anomaly-speculation-based filter checker is proposed to guide a verification priority before the re-execution process starts. This technique is accomplished by exploiting a value similarity property, which is defined by a frequent occurrence of partially identical values. Based on the biased distribution of similarity distance measure, this paper investigates further application to exploit similar values for soft error tolerance with anomaly speculation. Extensive measurements prove that the majority of instructions produce values, which are different from the previous result value, only in a few bits. Experimental results show that the proposed scheme accelerates the processor to be 180% faster than traditional fully-fault-tolerant processor with a minimal impact on overall soft error rate.

동조자이로스코프의 기계부 오차 해석 및 동적밸런싱 (Error Aalysis of Mechanical Parts and Dynamic Balancing in A Dynamically Tuned Gyroscope)

  • J.O. Young;C.G. Ahn;Lee, J.M.
    • 한국정밀공학회지
    • /
    • 제14권2호
    • /
    • pp.13-22
    • /
    • 1997
  • Strapdown inertial navigation system(SDINS) is a navigational instruments necessary to guide and con- trol a free vehicle. In this study, an error analysis of mechanical parts is carried out for manufacturing a dynamically tuned gyroscope. The errors usually come from the tolerance in machining and assembly. In the error analysis, a criterion to be considered during designing and manufacturing is proposed by quanti- tatively analyzing the effect of DTG performance by tolerances. The theory of dynamic balancing is deduced and unbalance is reduced through experiment.

  • PDF

Error Control Policy for Initial Value Problems with Discontinuities and Delays

  • Khader, Abdul Hadi Alim A.
    • Kyungpook Mathematical Journal
    • /
    • 제48권4호
    • /
    • pp.665-684
    • /
    • 2008
  • Runge-Kutta-Nystr$\"{o}$m (RKN) methods provide a popular way to solve the initial value problem (IVP) for a system of ordinary differential equations (ODEs). Users of software are typically asked to specify a tolerance ${\delta}$, that indicates in somewhat vague sense, the level of accuracy required. It is clearly important to understand the precise effect of changing ${\delta}$, and to derive the strongest possible results about the behaviour of the global error that will not have regular behaviour unless an appropriate stepsize selection formula and standard error control policy are used. Faced with this situation sufficient conditions on an algorithm that guarantee such behaviour for the global error to be asympotatically linear in ${\delta}$ as ${\delta}{\rightarrow}0$, that were first derived by Stetter. Here we extend the analysis to cover a certain class of ODEs with low-order derivative discontinuities, and the class of ODEs with constant delays. We show that standard error control techniques will be successful if discontinuities are handled correctly and delay terms are calculated with sufficient accurate interpolants. It is perhaps surprising that several delay ODE algorithms that have been proposed do not use sufficiently accurate interpolants to guarantee asymptotic proportionality. Our theoretical results are illustrated numerically.

Monte Carlo 방법을 이용한 공초점 주사 현미경의 오차 분석과 정렬 공차 할당에 관한 연구 (Error Analysis and Alignment Tolerancing for Confocal Scanning Microscope using Monte Carlo Method)

  • 유홍기;강동균;이승우;권대갑
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.92-99
    • /
    • 2004
  • The errors can cause the serious loss of the performance of a precision machine system. In this paper, we proposed the method of allocating the alignment tolerances of the parts and applied this method to get the optimal tolerances of a Confocal Scanning Microscope. In general, tight tolerances are required to maintain the performance of a system, but a high cost of manufacturing and assembling is required to preserve the tight tolerances. The purpose of allocating the optimal tolerances is minimizing the cost while keeping the high performance of the system. In the optimal problem, we maximized the tolerances while maintaining the performance requirements. The Monte Carlo Method, a statistical simulation method, is used in tolerance analysis. Alignment tolerances of optical components of the confocal scanning microscope are optimized to minimize the cost and to maintain the observation performance of the microscope. We can also apply this method to the other precision machine system.

정지궤도위성 전력조절장치 버스제어기 안정도해석 (A Stability Analysis of Bus Controller of Power Control Unit for GEO Satellite)

  • 최재동
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.874-877
    • /
    • 2004
  • This paper presents the bus controller analysis of a power control unit of GEO satellite with 3kW power output. The sensing error of bus voltage produce control signal of the shunt switch assembly and the battery power converter, and the tolerance of error signal generated decide the stability of proposed system. The worst case analysis considered for the initial tolerance, temperature effect, tolerance of end of life is peformed to verify a designed bus controller. And also, the stability of system proposed according to moving of zero and pole values by some component failures is analyzed.

  • PDF

IaaS 클라우드 서비스 수락제어를 위한 효율적인 2단계 휴리스틱 정책 (An Efficient Two-Phase Heuristic Policy for Acceptance Control in IaaS Cloud Service)

  • 김문경;최진영
    • 산업경영시스템학회지
    • /
    • 제38권2호
    • /
    • pp.91-100
    • /
    • 2015
  • In this study, we propose an efficient two-phase heuristic policy, called an acceptance tolerance control policy, for Infrastructure as a Service (IaaS) cloud services that considers both the service provider and customer in terms of profit and satisfaction, respectively. Each time an IaaS cloud service is requested, this policy determines whether the service is accepted or rejected by calculating the potential for realizing the two performance objectives. Moreover, it uses acceptance tolerance to identify the possibility for error with the chosen decision while compensating for both future fluctuations in customer demand and error possibilities based on past decisions. We conducted a numerical experiment to verify the performance of the proposed policy using several actual IaaS cloud service specifications and comparing it with other heuristics.

휴대폰용 카메라 모듈의 렌즈 시스템에 대한 공차 해석 및 설계 개선에 관한 연구 (Tolerance Analysis and Design Improvement of a Lens System for Mobile Phone Camera)

  • 정상진;최병렬;최동훈;김주호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1063-1068
    • /
    • 2008
  • A lens system of a camera module for mobile phones is comprised of the composition and design of various shapes of lens. To improve responses such as the modular transfer function (MTF), a lens system should always be constructed by considering uncertainty that can be caused by manufacturing and assembly error. In this study, tolerance optimization using the Latin Hypercube Sampling (LHS) technique is performed. In order to reduce the computational burden of the tolerance optimization process and decrease the influence from numerical noise effectively, we use the Progressive Quadratic Response Surface Modeling (PQRSM), which is one of Sequential Approximate Optimization (SAO) techniques. Using this method, we achieved optimal tolerance for each lens and obtained reliability for satisfying user‘s requirements. In addition, through the design process the manufacturing and assembly cost of a lens system was reduced.

  • PDF