• Title/Summary/Keyword: Tolerance calculation

Search Result 76, Processing Time 0.02 seconds

A Study on the Problems and Improvements of the Area Error Formula in Cadastral Surveying (지적측량의 면적오차 계산공식에 대한 문제점 및 개선방안 고찰)

  • Yang, Chul-Soo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.5-16
    • /
    • 2022
  • Based on the general formula for the area error of a polygon and rectangular parcel, the constant term 0.0262 × M (scale denominator) of the area error calculation formula prescribed by the Enforcement Decree was analyzed. As a result, it is found that the formula appropriately reflects the characteristics of the graphical surveying as a typical rectangular parcel model, but quantitatively allows a relatively large area error. In addition, it is found that, even if the area is the same, 50% more area error than a square parcel could be calculated depending on the shape of the parcel, and that the allowable area error should be different when dividing a parcel. Based on the analysis, furthermore, this study shows a solution that can solve the problems at once from the point of cadastral surveying. These are, the problem of reflecting the accuracy of the surveying, the problem of reflecting the size and shape of the parcel, and the problem whether a single area error formula can be used without having to distinguish between graphical and numerical surveyings. The new formula that solves these problems will bring about improvements in many related factors and promote the development of digital cadastral system.

Application of Westgard Multi-Rules for Improving Nuclear Medicine Blood Test Quality Control (핵의학 검체검사 정도관리의 개선을 위한 Westgard Multi-Rules의 적용)

  • Jung, Heung-Soo;Bae, Jin-Soo;Shin, Yong-Hwan;Kim, Ji-Young;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.115-118
    • /
    • 2012
  • Purpose: The Levey-Jennings chart controlled measurement values that deviated from the tolerance value (mean ${\pm}2SD$ or ${\pm}3SD$). On the other hand, the upgraded Westgard Multi-Rules are actively recommended as a more efficient, specialized form of hospital certification in relation to Internal Quality Control. To apply Westgard Multi-Rules in quality control, credible quality control substance and target value are required. However, as physical examinations commonly use quality control substances provided within the test kit, there are many difficulties presented in the calculation of target value in relation to frequent changes in concentration value and insufficient credibility of quality control substance. This study attempts to improve the professionalism and credibility of quality control by applying Westgard Multi-Rules and calculating credible target value by using a commercialized quality control substance. Materials and Methods : This study used Immunoassay Plus Control Level 1, 2, 3 of Company B as the quality control substance of Total T3, which is the thyroid test implemented at the relevant hospital. Target value was established as the mean value of 295 cases collected for 1 month, excluding values that deviated from ${\pm}2SD$. The hospital quality control calculation program was used to enter target value. 12s, 22s, 13s, 2 of 32s, R4s, 41s, $10\bar{x}$, 7T of Westgard Multi-Rules were applied in the Total T3 experiment, which was conducted 194 times for 20 days in August. Based on the applied rules, this study classified data into random error and systemic error for analysis. Results: Quality control substances 1, 2, and 3 were each established as 84.2 ng/$dl$, 156.7 ng/$dl$, 242.4 ng/$dl$ for target values of Total T3, with the standard deviation established as 11.22 ng/$dl$, 14.52 ng/$dl$, 14.52 ng/$dl$ respectively. According to error type analysis achieved after applying Westgard Multi-Rules based on established target values, the following results were obtained for Random error, 12s was analyzed 48 times, 13s was analyzed 13 times, R4s was analyzed 6 times, for Systemic error, 22s was analyzed 10 times, 41s was analyzed 11 times, 2 of 32s was analyzed 17 times, $10\bar{x}$ was analyzed 10 times, and 7T was not applied. For uncontrollable Random error types, the entire experimental process was rechecked and greater emphasis was placed on re-testing. For controllable Systemic error types, this study searched the cause of error, recorded the relevant cause in the action form and reported the information to the Internal Quality Control committee if necessary. Conclusions : This study applied Westgard Multi-Rules by using commercialized substance as quality control substance and establishing target values. In result, precise analysis of Random error and Systemic error was achieved through the analysis of 12s, 22s, 13s, 2 of 32s, R4s, 41s, $10\bar{x}$, 7T rules. Furthermore, ideal quality control was achieved through analysis conducted on all data presented within the range of ${\pm}3SD$. In this regard, it can be said that the quality control method formed based on the systematic application of Westgard Multi-Rules is more effective than the Levey-Jennings chart and can maximize error detection.

  • PDF

Quality Assurance of Patients for Intensity Modulated Radiation Therapy (세기조절방사선치료(IMRT) 환자의 QA)

  • Yoon Sang Min;Yi Byong Yong;Choi Eun Kyung;Kim Jong Hoon;Ahn Seung Do;Lee Sang-Wook
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.81-90
    • /
    • 2002
  • Purpose : To establish and verify the proper and the practical IMRT (Intensity--modulated radiation therapy) patient QA (Quality Assurance). Materials and Methods : An IMRT QA which consists of 3 steps and 16 items were designed and examined the validity of the program by applying to 9 patients, 12 IMRT cases of various sites. The three step OA program consists of RTP related QA, treatment information flow QA, and a treatment delivery QA procedure. The evaluation of organ constraints, the validity of the point dose, and the dose distribution are major issues in the RTP related QA procedure. The leaf sequence file generation, the evaluation of the MLC control file, the comparison of the dry run film, and the IMRT field simulate image were included in the treatment information flow procedure QA. The patient setup QA, the verification of the IMRT treatment fields to the patients, and the examination of the data in the Record & Verify system make up the treatment delivery QA procedure. Results : The point dose measurement results of 10 cases showed good agreement with the RTP calculation within $3\%$. One case showed more than a $3\%$ difference and the other case showed more than $5\%$, which was out side the tolerance level. We could not find any differences of more than 2 mm between the RTP leaf sequence and the dry run film. Film dosimetry and the dose distribution from the phantom plan showed the same tendency, but quantitative analysis was not possible because of the film dosimetry nature. No error had been found from the MLC control file and one mis-registration case was found before treatment. Conclusion : This study shows the usefulness and the necessity of the IMRT patient QA program. The whole procedure of this program should be peformed, especially by institutions that have just started to accumulate experience. But, the program is too complex and time consuming. Therefore, we propose practical and essential QA items for institutions in which the IMRT is performed as a routine procedure.

Commissioning Experience of Tri-Cobalt-60 MRI-guided Radiation Therapy System (자기공명영상유도 Co-60 기반 방사선치료기기의 커미셔닝 경험)

  • Park, Jong Min;Park, So-Yeon;Wu, Hong-Gyun;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.193-200
    • /
    • 2015
  • The aim of this study is to present commissioning results of the ViewRay system. We verified safety functions of the ViewRay system. For imaging system, we acquired signal to noise ratio (SNR) and image uniformity. In addition, we checked spatial integrity of the image. Couch movement accuracy and coincidence of isocenters (radiation therapy system, imaging system and virtual isocneter) was verified. Accuracy of MLC positioing was checked. We performed reference dosimetry according to American Association of Physicists in Medicine (AAPM) Task Group 51 (TG-51) in water phantom for head 1 and 3. The deviations between measurements and calculation of percent depth dose (PDD) and output factor were evaluated. Finally, we performed gamma evaluations with a total of 8 IMRT plans as an end-to-end (E2E) test of the system. Every safety system of ViewRay operated properly. The values of SNR and Uniformity met the tolerance level. Every point within 10 cm and 17.5 cm radii about the isocenter showed deviations less than 1 mm and 2 mm, respectively. The average couch movement errors in transverse (x), longitudinal (y) and vertical (z) directions were 0.2 mm, 0.1 mm and 0.2 mm, respectively. The deviations between radiation isocenter and virtual isocenter in x, y and z directions were 0 mm, 0 mm and 0.3 mm, respectively. Those between virtual isocenter and imaging isocenter were 0.6 mm, 0.5 mm and 0.2 mm, respectively. The average MLC positioning errors were less than 0.6 mm. The deviations of output, PDDs between mesured vs. BJR supplement 25, PDDs between measured and calculated and output factors of each head were less than 0.5%, 1%, 1% and 2%, respectively. For E2E test, average gamma passing rate with 3%/3 mm criterion was $99.9%{\pm}0.1%$.

Freeze Risk Assessment for Three Major Peach Growing Areas under the Future Climate Projected by RCP8.5 Emission Scenario (신 기후변화시나리오 RCP 8.5에 근거한 복숭아 주산지 세 곳의 동해위험도 평가)

  • Kim, Soo-Ock;Kim, Dae-Jun;Kim, Jin-Hee;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.3
    • /
    • pp.124-131
    • /
    • 2012
  • This study was carried out to evaluate a possible change in freeze risk for 'Changhowon Hwangdo' peach buds in three major peach growing areas under the future climate projected by RCP8.5 emission scenario. Mean values of the monthly temperature data for the present decade (2000s) and the future decades (2020s, 2050s, 2080s) were extracted for farm lands in Icheon, Chungju, and Yeongcheon-Gyeongsan region at 1km resolution and 30 sets of daily temperature data were generated randomly by a stochastic process for each decade. The daily data were used to calculate a thermal time-based dormancy depth index which is closely related to the cold tolerance of peach buds. Combined with daily minimum temperature, dormancy depth can be used to estimate the potential risk of freezing damage on peach buds. When the freeze risk was calculated daily for the winter period (from 1 November to 15 March) in the present decade, Icheon and Chungju regions had high values across the whole period, but Yeongcheon-Gyeongsan regions had low values from mid-December to the end of January. In the future decades, the frequency of freezing damage would be reduced in all 3 regions and the reduction rate could be as high as 75 to 90% by 2080's. However, the severe class risk (over 80% damage) will not disappear in the future and most occurrences will be limited to December to early January according to the calculation. This phenomenon might be explained by shortened cold hardiness period caused by winter warming as well as sudden cold waves resulting from the higher inter-annual climate variability projected by the RCP8.5 scenario.

Evaluation of the Usefulness of MapPHAN for the Verification of Volumetric Modulated Arc Therapy Planning (용적세기조절회전치료 치료계획 확인에 사용되는 MapPHAN의 유용성 평가)

  • Woo, Heon;Park, Jang Pil;Min, Jae Soon;Lee, Jae Hee;Yoo, Suk Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.115-121
    • /
    • 2013
  • Purpose: Latest linear accelerator and the introduction of new measurement equipment to the agency that the introduction of this equipment in the future, by analyzing the process of confirming the usefulness of the preparation process for applying it in the clinical causes some problems, should be helpful. Materials and Methods: All measurements TrueBEAM STX (Varian, USA) was used, and a file specific to each energy, irradiation conditions, the dose distribution was calculated using a computerized treatment planning equipment (Eclipse ver 10.0.39, Varian, USA). Measuring performance and cause errors in MapCHECK 2 were analyzed and measured against. In order to verify the performance of the MapCHECK 2, 6X, 6X-FFF, 10X, 10X-FFF, 15X field size $10{\times}10$ cm, gantry $0^{\circ}$, $180^{\circ}$ direction was measured by the energy. IGRT couch of the CT values affect the measurements in order to confirm, CT number values : -800 (Carbon) & -950 (COUCH in the air), -100 & 6X-950 in the state for FFF, 15X of the energy field sizes $10{\times}10$, gantry $180^{\circ}$, $135^{\circ}$, $275^{\circ}$ directionwas measured at, MapPHAN allocated to confirm the value of HU were compared, using the treatment planning computer for, Measurement error problem by the sharp edges MapPHAN Learn gantry direction MapPHAN of dependence was measured in three ways. GANTRY $90^{\circ}$, $270^{\circ}$ in the direction of the vertically erected settings 6X-FFF, 15X respectively, and Setting the state established as a horizontal field sizes $10{\times}10$, $90^{\circ}$, $45^{\circ}$, $315^{\circ}$, $270^{\circ}$ of in the direction of the energy-6X-FFF, 15X, respectively, were measured. Without intensity modulated beam of the third open arc were investigated. Results: Of basic performance MapCHECK confirm the attenuation measured by Couch, measured from the measured HU values that are assigned to the MAP-PHAN, check for calculation accuracy for the angled edge of the MapPHAN all come in a range of valid measurement errors do not affect the could see. three ways for the Gantry direction dependence, the first of the meter built into the value of the Gantry $270^{\circ}$ (relative $0^{\circ}$), $90^{\circ}$ (relative $180^{\circ}$), 6X-FFF, 15X from each -1.51, 0.83% and -0.63, -0.22% was not affected by the AP/PA direction represented. Setting the meter horizontally Gantry $90^{\circ}$, $270^{\circ}$ from the couch, Energy 6X-FFF 4.37, 2.84%, 15X, -9.63, -13.32% the difference. By-side direction measurements MapPHAN in value is not within the valid range can not, because that could be confirmed as gamma pass rate 3% of the value is greater than the value shown. You can check the Open Arc 6X-FFF, 15X energy, field size $10{\times}10$ cm $360^{\circ}$ rotation of the dose distribution in the state to look at nearly 90% pass rate to emerge. Conclusion: Based on the above results, the MapPHAN gantry direction dependence by side in the direction of the beam relative dose distribution suitable for measuring the gamma value, but accurate measurement of the absolute dose can not be considered is. this paper, a more accurate treatment plan in order to confirm, Reduce the tolerance for VMAT, such as lateral rotation investigation in order to measure accurate absolute isodose using a combination of IMF (Isocentric Mounting Fixture) MapCHEK 2, will be able to minimize the impact due to the angular dependence.

  • PDF