• Title/Summary/Keyword: Tolerance calculation

Search Result 76, Processing Time 0.02 seconds

Velocity and Acceleration Error Analysis of Planar Mechanism Due to Tolerances (기계시스템의 공차에 의한 속도 및 가속도 오차의 해석)

  • 이세정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.351-358
    • /
    • 1994
  • A probabilistic model and analysis methods to determine the means and variances of the velocity and acceleration in stochastically-defined planar pin jointed kinematic chains are presented. The presented model considers the effect of tolerances on link length and radial clearance and uncertainty of pin location as a net effect on the link's effective length. The determination of the mean values and variances of the output variables requires the calculation of sensitivities of secondary variables with respect to the random variables. It is shown that this computation is straightforward and can be accomplished by a conventional kinematic analysis package with minor modification. Thus, the concepts of tolerance and clearance have been captured by the model and analysis. The only input data are the nominal linkage model and statistical information. The "effective link length" model is shown to be applicable to both analytical solution and Monte Carlo simulation. The results from both methods are compared. This paper Ksolves the higher-order kinematic problems for the probabilistic design analysis of stochastically-defined mechanisms.echanisms.

Quality Assurance on Dose Distribution of Ir-192 Line Source (Ir-192 선 선원의 선량분포에 관한 품질보증)

  • Kim, Jong-Eon
    • Journal of radiological science and technology
    • /
    • v.30 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • The propose of this study is a verification of the correct calculation of the dose around source and the prescription dose of Ir-192 source in the plato treatment planning system. The source and orthogonal coordinates for lateral direction and those for the anterior posterior direction were drawn on a A4 paper and then input into the system. The prescription dose was prescribed to two points with radius 1 cm in the direction of polar angle $90^{\circ} and $270^{\circ} from the center of the source. The doses of prescription point and dose points acquired from the treatment planning system were compared with those from manual calculation using the geometry function formalism derived by Paul King et al. In this analysis, the doses of prescription point were exactly consistent with each other and those of dose points were obtained within the error point of 1.85%. And the system of accuracy was evaluated within 2% of tolerance error. Therefore, this manual dose calculation used for the geometry function formalism is considered to be useful in clinics due to its convenience and high quality assurance.

  • PDF

Grid Discretization Study for the Efficient Aerodynamic Analysis of the Very Light Aircraft (VLA) Configuration

  • Sitio, Moses;Kim, Sangho;Lee, Jaewoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.122-132
    • /
    • 2013
  • In this research the development of unstructured grid discretization solution techniques is presented. The purpose is to describe such a conservative discretization scheme applied for experimental validation work. The objective of this paper is to better establish the effects of mesh generation techniques on velocity fields and particle deposition patterns to determine the optimal aerodynamic characteristics. In order to achieve the objective, the mesh surface discretization approaches used the VLA prototype manufacturing tolerance zone of the outer surface. There were 3 schemes for this discretization study implementation. They are solver validation, grid convergence study and surface tolerance study. A solver validation work was implemented for the simple 2D and 3D model to get the optimum solver for the VLA model. A grid convergence study was also conducted with a different growth factor and cell spacing, the amount of mesh can be controlled. With several amount of mesh we can get the converged amount of mesh compared to experimental data. The density around surface model can be calculated by controlling the number of element in every important and sensitive surface area of the model. The solver validation work result provided the optimum solver to employ in the VLA model analysis calculation. The convergence study approach result indicated that the aerodynamic trend characteristic was captured smooth enough compared with the experimental data. During the surface tolerance scheme, it could catch the aerodynamics data of the experiment data. The discretization studies made the validation work more efficient way to achieve the purpose of this paper.

Design Circuit Parameter Estimation of Impulse Generator and its application to 10/350${\mu}s$ Lightning Impulse Current Generator (임펄스 발생기의 회로 설계 파라미터 예측계산과 10/350${\mu}s$ 뇌임펄스 전류발생기 적용)

  • Lee, Jae-Bok;Shenderey, S. V.;Chang, Sug-Hun;Myung, Sung-Ho;Cho, Yuen-Gue
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1822-1828
    • /
    • 2008
  • This paper presents design parameter calculation methodology and its realization to construction for the 10/350${\mu}s$ lightning impulse current generator(ICG) modelled as double exponential function waveform with characteristic parameters ${\alpha},{\beta}$. Matlab internal function, "fzero" was applied to find ${\lambda}={\alpha}/{\beta}$ which is solution of nonlinear equation linearly related with two wave parameter $T_1$ and $T_2$. The calculation results for 10/350${\mu}s$ lightning impulse current show very good accuracy with error less 0.03%. Two type of 10/350${\mu}s$ ICGs based on the calculated design circuit parameters were fabricated by considering the load variation. One is applicable to the MOV based Surge protective device(SPD) for less 15 kA and the other is to test small resistive devices such as spark gap arrester and bonding device with maximum current capability 30 kA. The tested waveforms show error within 10% in comparison with the designed estimation and the waveform tolerance recommended in the IEC 61643-1 and IEC 60060-1.

Optimum Design Methodology of the Damped Oscillatory Impulse Current Generator Considering a Nonlinear Load (비선형 부하를 고려한 감쇠 진동형 임펄스 전류발생기의 설계 기법)

  • Chang, Sug-Hun;Lee, Jae-Bok;Shenderey, S.V.;Myung, Sung-Ho;Cho, Yuen-Gue
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2255-2262
    • /
    • 2008
  • This paper presents a design parameter calculation methodology and its realization to construction for the damped oscillatory impulse current generator(ICG) modelled as damping factor $\alpha$. Matlab internal functions, "fzero" and "polyfit" are applied to find a which are solutions of second order nonlinear equation related with three wave parameters $T_{1},T_{2}$ and $I_{os}$. The calculation results for standard impulse current waveforms such as 4/10${\mu}s$, 8/20${\mu}s$ and 30/80${\mu}s$ show very good accuracy and this results make it possible to extend to generalization in the design of damped oscillatory lCG with any capacitor. 8/20${\mu}s$ ICG based on the calculated design circuit parameters is fabricated in consideration of the nonlinear load(MOV) variation. Comparisons of the tested waveforms with the designed estimation show error within 10% for the waveform tolerance recommended in IEC 60060-1 and IEEE std. C62.45.

Improved Dynamic Programming in Local Linear Approximation Based on a Template in a Lightweight ECG Signal-Processing Edge Device

  • Lee, Seungmin;Park, Daejin
    • Journal of Information Processing Systems
    • /
    • v.18 no.1
    • /
    • pp.97-114
    • /
    • 2022
  • Interest is increasing in electrocardiogram (ECG) signal analysis for embedded devices, creating the need to develop an algorithm suitable for a low-power, low-memory embedded device. Linear approximation of the ECG signal facilitates the detection of fiducial points by expressing the signal as a small number of vertices. However, dynamic programming, a global optimization method used for linear approximation, has the disadvantage of high complexity using memoization. In this paper, the calculation area and memory usage are improved using a linear approximated template. The proposed algorithm reduces the calculation area required for dynamic programming through local optimization around the vertices of the template. In addition, it minimizes the storage space required by expressing the time information using the error from the vertices of the template, which is more compact than the time difference between vertices. When the length of the signal is L, the number of vertices is N, and the margin tolerance is M, the spatial complexity improves from O(NL) to O(NM). In our experiment, the linear approximation processing time was 12.45 times faster, from 18.18 ms to 1.46 ms on average, for each beat. The quality distribution of the percentage root mean square difference confirms that the proposed algorithm is a stable approximation.

Modelling of a Ring-type Multi-pole Inductive Position Sensor Using Magnetic Circuit Theory (자기회로 이론을 이용한 링형 다극 유도형 변위센서의 모델링)

  • 김지미;노명규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.207-211
    • /
    • 2004
  • The performance of an inductive position sensor has approved by previous research papers. In this paper, magnetic circuit model of a ring-type multi-pole insuctive position sensor is described. The magnetic circuit model is required to design in ductive position sensor as well as draw a fault tolerance algorithm. Using the magnetic circuit theory, we derived the relationship between voltage applied and flux density in the normal air-gap. By idealizing the modulation/demodulation processes of signal processing circuit, sensor gain with respect to change of displacement is theoretically calculation using the magnetic circuit model, which validate the theoretical derivation.

  • PDF

GAIN DEGRADATION OF KVN 21-M SHAPED CASSEGRAIN ANTENNA DUE TO MISALIGNMENT OF ANTENNA OPTICS

  • Chung Moon-Hee;Byun, Do-Young;Khaikin Vladimir B.
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.327-336
    • /
    • 2006
  • In this paper, gain loss of KVN (Korean VLBI Network) 21-m shaped Cassegrain antenna due to misalignment of antenna optics is calculated using ray-tracing method. It enables us to estimate alignment tolerances of feed and sub-reflector positioning. According to numerical results, KVN 21-m shaped Cassegrain antenna's gain loss is more sensitive to positions of feed and sub-reflector than in case of the equivalent classical Cassegrain antenna. The result of calculation is believed to be utilized as a possible guideline when checking the performance of the antenna system.

A study on the process capability of machining process (기계가공공정(機械加工工程)의 공정능력(工程能力)에 대(對)한 연구(硏究))

  • Sung, Hwan Tae
    • Journal of Korean Society for Quality Management
    • /
    • v.5 no.1
    • /
    • pp.3-10
    • /
    • 1977
  • The research on the process capability is the basis for quality design, operation standard and so on. In this study, histogram of the measured value for the cutting process and calculation of the capability factor Cp are established, resulting in the classification of 4 grades, and necessary measures for them are presented. The advancement of productivity is the most significant result of this study. The processing time per piece for those stabilized processes having the capability factor 1.33 and above is lessened, and the advancement in quantity capability is made possible permitting dispersion of standard up to the tolerance limit. The exact knowledge of process capability is most important for the quality design system. For the efficient application of this result of the research, a systematic and positive cooperation by the whole company members is needed.

  • PDF

A Study on Mechanical Parts for Smooth Lift by 6 Sigma (6시그마를 이용한 유연승강부품에 관한 연구)

  • Cheong, Seon-Hwan;Choi, Seong-Dae;Cho, Gyu-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.36-41
    • /
    • 2006
  • This study was carried out to install the lifting force of a two hinge type stand mechanism by 6 Sigma process in advance. This unit is designed for the display device in order to enhance the ergonomics for effective height adjustment and maintenance at any preferred position. The unit will be very useful for the mechanism fabricated with coil springs and disc springs as a torque generator. The 6 Sigma process was applied to select two key factors among 7 elements to lift the head unit and to find out applicable tolerance securing the 3.4 ppm of defects as well as what deviation of lifting force we can expect between calculation and experiment at the design stage of development. The result of this study can be applied to various units for the optimization of the smooth lift.

  • PDF