• Title/Summary/Keyword: Tobacco Mosaic Virus

Search Result 169, Processing Time 0.023 seconds

Studies on Mild Mutants of Tobacco Mosaic Virus II. Biochemical Properties of Ribonucleic Acid and Coat Protein (약독 담배모자이크바이러스 II. RNA 및 외피단백질의 특성)

  • Choi Jang Kyung;Park Won Mok
    • Korean Journal Plant Pathology
    • /
    • v.2 no.2
    • /
    • pp.121-128
    • /
    • 1986
  • The biochemical properties of ribonucleic acid (RNA) and coat protein of the mild tobacco mosaic virus (TMV) mutant, Tw 333 are described. The molecular weight of the RNA calculated from polyacrylamide gel electrophoresis was $2.03\times10^6$ daltons. The molar ratio of the bases of the RNA was 25.4 guanine, 29.2 adenine, 17.5 cytosine and 27.9 uracil in moles. The hyperchromicity on Tw 333-RNA by thermal denaturation was $25.1\%$, indicating Tm value of $47^{\circ}C$. The virus coat protein migrated as a single component in SDS-polyacrylamide gel electrophoresis and had a molecular weight of 17,500 daltons. A total of 158 amino acid residues are present in the protein. Separation of the tryptic peptides by electrophoresis and chromatography yielded ninhydrin-positive compounds. The biochemical properties of RNA and coat protein of the mild mutant we very similar to those of wild type of TMV-OM strain, but some difference between the strains were observe in the base composition, hyperchromicity, amino acid composition and tryptic peptide map.

  • PDF

Virulence differentiation of bean common mosaic potyvirus in leguminosae crops

  • Park, H.S.;T.S.Jin;Park, J.W.;Lee, S.H.;J.U.Cheon;Park, J.K.;Y.Takanami
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.141.1-141
    • /
    • 2003
  • Forty six isolates of bean common mosaic virus (BCMV) collected from azuki bean, mungbean, kidney bean, cowpea, broad bean and peanut were classified into three groups based on biological, serological, cytopathological, and molecular characteristics. Group I induced vein-banding symptoms in cowpea which was similar to those produced by the BCMV-cowpea strain. Group II caused mosaic symptoms in azuki bean but not in peanut and tobacco. Since this character was different from that of previously described BCMV strain, group II may not belong to BCMV GroupIII induced vein-clearing symptoms in azuki bean, kidney bean and peanut, which are typical symptoms for BCMV-peanut stripe virus strain. Virus inclusion patterns of BCMV groups were similar to those of Potyvirus subdivision III with the scroll, pinwheel and long laminated inclusions. However, the inclusions of laminated aggregates were never observed in mungbean isolates. Multiple alignment as well as cluster dendrograms of 3'noncoding region (3'-NCR) and a part of coat protein gene (CP) suggested that group I belongs to the BCMV-cowpea strain, group II to the BCMV-azuki bean strain, and group III to the BCMV-peanut stripe virus strain. Since molecular phylogenesis of BCMV based on nucleotides of 3'-NCR and coat protein differed from the grouping based on virulence differentiation, and BCMV groups are more closely related to each other with the same host origin, other characteristics of those strains are under investigation.

  • PDF

RNA silencing-mediated resistance is related to biotic / abiotic stresses and cellular RdRp expression in transgenic tobacco plants

  • Wu, Xiao-Liang;Hou, Wen-Cui;Wang, Mei-Mei;Zhu, Xiao-Ping;Li, Fang;Zhang, Jie-Dao;Li, Xin-Zheng;Guo, Xing-Qi
    • BMB Reports
    • /
    • v.41 no.5
    • /
    • pp.376-381
    • /
    • 2008
  • The discovery of RNA silencing inhibition by virus encoded suppressors or low temperature leads to concerns about the stability of transgenic resistance. RNA-dependent RNA polymerase (RdRp) has been previously characterized to be essential for transgene-mediated RNA silencing. Here we showed that low temperature led to the inhibition of RNA silencing, the loss of viral resistance and the reduced expression of host RdRp homolog (NtRdRP1) in transgenic T4 progeny with untranslatable potato virus Y coat protein (PVY-CP) gene. Moreover, RNA silencing and the associated resistance were differently inhibited by potato virus X (PVX) and tobacco mosaic virus (TMV) infections. The increased expression of NtRdRP1 in both PVX and TMV infected plants indicated its general role in response to viral pathogens. Collectively, we propose that biotic and abiotic stress factors affect RNA silencing-mediated resistance in transgenic tobacco plants and that their effects target different steps of RNA silencing.

Increase in Linolenate Contents by Expression of the fad3 Gene in Transgenic Tobacco Plants

  • Kang, Young-Hwi;Min, Bok-Kee;Park, Hee-Sung;Lim, Kyung-Jun;Huh, Tae-Lin;Lee, Se-Yong
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.308-313
    • /
    • 1996
  • An 1.4 kb of the fad3 cDNA encoding microsomal linoleic acid desaturase catalyzing the conversion of linoleic acid (18:2, ${\omega}-6$) to linolenic acid (18:2, ${\omega}-3$) was introduced into tobacco plants by the Agrobacterium-mediated plant transformation, Among the transgenic tobacco plants conferring kanamycin resistance, five transformants showing increment in unsaturated fatty acid contents were selected and further analyzed for the transgenecity, In genomic Southern blot analyses, copy numbers of the integrated fad3 DNA in chromosomal DNA of the five transgenic tobacco plants were varied among the transgenic lines. By Northern blot analyses, the abundancy of the fad3 mRNA transcript directed by Cauliflower Mosaic Virus 35S promoter was consistent with the relative copy number of the fad3 DNA integrated in the chromosome of transgenic tobacco plants. When compared with the wild type, accumulation of linolenic acid in transgenic tobacco roots was elevated 3.7- to 4.7-fold showing a corresponding decrease in the linoleic acid contents; however, slight increments for linolenic acid were noticed in transgenic leaf tissues. These results indicated that the elevated level of fad3 expression is achieved in transgenic tobacco plants.

  • PDF

Physico-chemical and Antagonistic Properties of Antibiotics Produced by Actinomycetes Isolate G-37 (방선균 분리주 G-37이 생산하는 항생물질의 물리.화학적 특성과 항균활성)

  • 여운형;김영호;채순용;박은경
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.17 no.2
    • /
    • pp.103-108
    • /
    • 1995
  • Antibiotic and physico-chemical properties of an active compound from actinomycetes isolate G-37, of which the culture filtrate had an inhibitory effect against tobacco mosaic virus(W) infection, were examined. The active compound, which was purified by ethylacetate extraction, silica gel column chromatography, preparative thin layer chromatography, and high performance liquid chromatography, showed strong antibacterial activities especially against Gram-positive bacteria including Bacillus subtillis, Sarcina lutea and Staphylococcus aureus. From the IH-NMR, FAB/RfS, UV spectral data, and physicochemical properties, the active compound of G-37 appears to belong to a peptide antibiotic group. Among the known peptide antibiotics in the antibiotic group, No. 280, A-30912, and Taitomycin showed molecular weights and ultra violet spectrum similar to those of the active compound from G-37, but was not identical to the compound, which suggests that it may be a new peptide antibiotics.

  • PDF

Pathological and molecular comparisons of five distinct species of pepper-infecting Potyviruses (oral)

  • Yoon, H.I.;Chung, H.M.;Ryu, K.H.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.113.2-114
    • /
    • 2003
  • Five pepper-infecting potyviruses, Pepper mottle virus (PepMoV), Chilli veinal mottle virus (CVMV), Pepper veinal mottle virus (PVMV), Pepper severe mosaic virus (PSMV) and Tobacco each virus (TEV), are known filamentous virus and can be infected pepper crops systemically. To understand pathology and genome information of the five viruses on pepper plants, host reactions and sequences were compared to the 5 viruses. Five potyviruses were inoculated onto some typical cultivars of hot peppers and compared their symptoms, and virus accumulations. A set of degenerate primers for potyviruses were applied to 5 viruses and RT-PCR was performed. RT-PCR products containing partial nuclear inclusion b and coat protein (CP) genes were cloned. Then, oligo dT primer and species-specific primer were redesigned to amplify the C-terminal part of CP and 3' noncoding regions of each viruses. Sequences of the viruses were analyzed and compared to serological relationships among the viruses. The data can be useful for screening of potyviruses in pepper plants and pathogen-derived transgenic pepper plant development.

  • PDF

The Plant Cellular Systems for Plant Virus Movement

  • Hong, Jin-Sung;Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.213-228
    • /
    • 2017
  • Plasmodesmata (PDs) are specialized intercellular channels that facilitate the exchange of various molecules, including sugars, ribonucleoprotein complexes, transcription factors, and mRNA. Their diameters, estimated to be 2.5 nm in the neck region, are too small to transfer viruses or viral genomes. Tobacco mosaic virus and Potexviruses are the most extensively studied viruses. In viruses, the movement protein (MP) is responsible for the PD gating that allows the intercellular movement of viral genomes. Various host factors interact with MP to regulate complicated mechanisms related to PD gating. Virus replication and assembly occur in viral replication complex (VRC) with membrane association, especially in the endoplasmic reticulum. VRC have a highly organized structure and are highly regulated by interactions among the various host factors, proteins encoded by the viral genome, and the viral genome. Virus trafficking requires host machineries, such as the cytoskeleton and the secretory systems. MP facilitates the virus replication and movement process. Despite the current level of understanding of virus movement, there are still many unknown and complex interactions between virus replication and virus movement. While numerous studies have been conducted to understand plant viruses with regards to cell-to-cell movement and replication, there are still many knowledge gaps. To study these interactions, adequate research tools must be used such as molecular, and biochemical techniques. Without such tools, virologists will not be able to gain an accurate or detailed understanding of the virus infection process.

Development of an RT-PCR assay and its positive clone for plant quarantine inspection of American plum line pattern virus in Korea

  • Da-Som Lee;Junghwa Lee;Seong-Jin Lee;Seungmo Lim;Jaeyong Chun
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.821-831
    • /
    • 2022
  • American plum line pattern virus (APLPV), a member of the genus Ilarvirus in the family Bromoviridae, is one of the plant quarantine pathogens in Korea. In this study, 15 candidate primer sets were designed and examined to develop a reverse transcription polymerase chain reaction (RT-PCR) assay for plant quarantine inspection of APLPV. Using APLPV-infected and healthy samples, the primer sets were assessed for APLPV detection. To confirm the occurrence of nonspecific reactions, six ilarviruses (Apple mosaic virus, Asparagus virus 2, Blueberry shock virus, Prune dwarf virus, Prunus necrotic ringspot virus, and Tobacco streak virus) and 10 target plants (Prunus mume, P. yedoensis, P. persica, P. armeniaca, P. dulcis, P. tomentosa, P. avium, P. glandulosa, P. salicina, and P. cerasifera) were examined. Finally, two primer sets were selected. These primer sets could generate the expected amplicons even with at least 1 ng of the total RNA template in concentration-dependent amplifications. In addition, a positive clone was developed for use as a positive control in the abovementioned RT-PCR assay.

Development of a New Flue - cured Tobacco Variety KFl13 by Nicotiana africana Method (Nicotiana africana 방법에 의한 황색종 연초 신품종 KF113 육성)

  • 정윤화;금완수;조명조;백기현;신승구;조수헌;진정의;이승철
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.1
    • /
    • pp.69-75
    • /
    • 1994
  • A new flue - cured tobacco variety KF113 was developed by Nicotiana africana method from a cross of NC82 and Coker 347 at the Suwon Experiment Station. It was tested in the 0fficial Variety Test in 1991-1992 and the flue - cured Regional Farm Test in 1992. KFl13 flowers 4 days later than WC82 (standard variety in Korea) and its harvestable leaves are 2 more than those of NC82. The leaf type and shape of KFl13 resembles Coker 347. It has high resistance to bacterial wilt (Pseudomonas solanacearum) and black shank (Phytophthora parasitica var. nicotianae), and is susceptible to tobacco mosaic virus. It should adapt well to the flue - cured production area and can reduce premature flowering under unfavorable weather conditions. Yield of KFl13 is 5% higher than that of NC82, and nearly equal in value per kg compare with NC82. This variety met acceptable standards for chemical and physical characteristics of cured leaf and for smoking taste evaluated by panel members in Korea Ginseng & Tobacco Research Institute.

  • PDF

Variation of Potato virus Y Isolated from Potato, Tobacco, Pea and Weeds in Korea on the C-terminal Region of Coat Protein Gene and 3'Non-translated Region

  • Yun, W.S.;Jung, H.W.;Oh, M.H.;Hahm, Y.I.;Kim, K.H.
    • The Plant Pathology Journal
    • /
    • v.18 no.3
    • /
    • pp.130-137
    • /
    • 2002
  • Potato virus Y (PVY) is one of the most important viruses in many field crops in Korea. In this study, 31 PVY isolates were isolated from infected potato (Solanum tuberosum), tobacco (Nicotiana tabacum), pea (Pisum sativum), and weeds (Veronica persica, Lamium amplexicause and Capsella bursa-pastoris) showing different mosaic symptoms in Jeonbuk, Chungnam, Gangwon, and Gyeongbuk areas in Korea. The 640 nucleotide region containing the C-terminal portion of coat protein (CP) gene and 3'non-translated region (NTR) was amplified by reverse transcription-polymerase chain reaction (RT-PCR) using PVY-specific oligonucleotide primers. Sequence analyses of the amplified DNA fragments showed that the C-terminal portion of CP gene was not significantly different from that of previously reported PVY strains from potato (PVY-OK and -T) and tobacco (PVY-VN) in Korea. Homologies of the deduced CP amino acid sequences were 93.3-99.0% to corresponding regions of the other PVY strains including PV $Y^{N}$, PV $Y^{o}$ , PV $Y^{OK}$ , PV $Y^{T}$ , and PV $Y^{VN}$ . In contrast the sequences located at the 3'-NTR showed more diverse sequence homologies (76.4-99.7%). These results indicate that the C-terminal portion of the CP gene was relatively conserved while sequences at the 3'NTR were more diverse and variable over the host species and the regions where they were isolated.e isolated.