• Title/Summary/Keyword: ToA(Time-of-Arrival)

Search Result 1,170, Processing Time 0.029 seconds

A New Diversity Combining Scheme Based on Interleaving Method for Time-of-arrival Estimation of Chirp Signal

  • Jang, Seong-Hyun;Chong, Jong-Wha
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.153-158
    • /
    • 2012
  • A new diversity combining scheme is proposed for time-of-arrival (TOA) estimation of chirp signal in dense multipath channel. In the multipath channel, the performance of TOA estimation using conventional correlation matrix-based diversity combining scheme is degraded due to the lack of de-correlation effect. To increase the de-correlation effect, the proposed diversity scheme employs interleaving method based on the property of de-chirped signal. As a result, the proposed scheme increases de-correlation effect and also reduces the noise of TOA estimation. Finally, the diversity achieved from the proposed scheme improves TOA estimation performance. The de-correlation effect is analyzed mathematically. The estimation accuracy of the proposed diversity scheme is superior to that of conventional diversity scheme in multipath channel.

Partial Discharge Position Tracking Method using a GIS Partial Discharge Signal and Arrival Time Difference (GIS 부분방전 신호와 도착 시간차 분석을 통한 PD발생 위치 추적)

  • Choi, Mun-Gyu;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1297-1301
    • /
    • 2013
  • This paper analyzes of PD occurrence position through an analysis of the arrival time difference between the GIS partial discharge signal. Because of GIS (Gas Insulated Switchgear) is a facility very important power equipment and as part of the equipment that make up the power system, the stabilization of the power industry, which accounted for 88.5% share of GIS substation in the form of a substation is an important equipment for power supply. In the situation where we are gradually expanding the need for preventive diagnosis in order to improve the efficiency of equipment management and failure prevention for Preventive diagnosis. In this paper as a method for extracting pre-defect of failure of GIS Apply the average value method of calculating the 5 times each using a pulse of the first time of the second pulse (${\Delta}t$) with an oscilloscope generation position PD(Partial Discharge). the results of GIS internal inspection, the partial discharge of the actual the position of the partial discharge was confirmed with an accuracy of about 82% of positions. Arrival time difference in the most effective manner if the partial discharge of GIS internal occurs by applying the averaging method and TOA(Time of arrival) method, the partial discharge occurs you through the measurement and analysis of PD signal occurs was confirmed in the experiment are presented and diagnostic methods location tracking.

Analysis of an M/G/1/K Queueing System with Queue-Length Dependent Service and Arrival Rates (시스템 내 고객 수에 따라 서비스율과 도착율을 조절하는 M/G/1/K 대기행렬의 분석)

  • Choi, Doo-Il;Lim, Dae-Eun
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.27-35
    • /
    • 2015
  • We analyze an M/G/1/K queueing system with queue-length dependent service and arrival rates. There are a single server and a buffer with finite capacity K including a customer in service. The customers are served by a first-come-first-service basis. We put two thresholds $L_1$ and $L_2$($${\geq_-}L_1$$ ) on the buffer. If the queue length at the service initiation epoch is less than the threshold $L_1$, the service time of customers follows $S_1$ with a mean of ${\mu}_1$ and the arrival of customers follows a Poisson process with a rate of ${\lambda}_1$. When the queue length at the service initiation epoch is equal to or greater than $L_1$ and less than $L_2$, the service time is changed to $S_2$ with a mean of $${\mu}_2{\geq_-}{\mu}_1$$. The arrival rate is still ${\lambda}_1$. Finally, if the queue length at the service initiation epoch is greater than $L_2$, the arrival rate of customers are also changed to a value of $${\lambda}_2({\leq_-}{\lambda}_1)$$ and the mean of the service times is ${\mu}_2$. By using the embedded Markov chain method, we derive queue length distribution at departure epochs. We also obtain the queue length distribution at an arbitrary time by the supplementary variable method. Finally, performance measures such as loss probability and mean waiting time are presented.

Joint Estimation of TOA and DOA in IR-UWB System Using Sparse Representation Framework

  • Wang, Fangqiu;Zhang, Xiaofei
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.460-468
    • /
    • 2014
  • This paper addresses the problem of joint time of arrival (TOA) and direction of arrival (DOA) estimation in impulse radio ultra-wideband systems with a two-antenna receiver and links the joint estimation of TOA and DOA to the sparse representation framework. Exploiting this link, an orthogonal matching pursuit algorithm is used for TOA estimation in the two antennas, and then the DOA parameters are estimated via the difference in the TOAs between the two antennas. The proposed algorithm can work well with a single measurement vector and can pair TOA and DOA parameters. Furthermore, it has better parameter-estimation performance than traditional propagator methods, such as, estimation of signal parameters via rotational invariance techniques algorithms matrix pencil algorithms, and other new joint-estimation schemes, with one single snapshot. The simulation results verify the usefulness of the proposed algorithm.

Optimal N-Policy of M/G/1 with Server Set-up Time under Heterogeneous Arrival Rates (서버상태의존 도착률을 갖는 M/G/l 모형의 최적 제어정책)

  • Paik, Seung-Jin;Hur, Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.153-162
    • /
    • 1997
  • M/G/1 queueing system is one of the most widely used one to model the real system. When operating a real systems, since it often takes cost, some control policies that change the operation scheme are adopted. In particular, the N-policy is the most popular among many control policies. Almost all researches on queueing system are based on the assumption that the arrival rates of customers into the queueing system is constant, In this paper, we consider the M/G/1 queueing system whose arrival rate varies according to the servers status : idle, set-up and busy states. For this study, we construct the steady state equations of queue lengths by means of the supplementary variable method, and derive the PGF(probability generating function) of them. The L-S-T(Laplace Stieltjes transform) of waiting time and average waiting time are also presented. We also develop an algorithm to find the optimal N-value from which the server starts his set-up. An analysis on the performance measures to minimize total operation cost of queueing system is included. We finally investigate the behavior of system operation cost as the optimal N and arrival rate change by a numerical study.

  • PDF

Time of Arrival range Based Wireless Sensor Localization in Precision Agriculture

  • Lee, Sang-Hyun;Moon, Kyung-Il
    • International journal of advanced smart convergence
    • /
    • v.3 no.2
    • /
    • pp.14-17
    • /
    • 2014
  • Precision agriculture relies on information technology, whose precondition is providing real-time and accurate information. It depends on various kinds of advanced sensors, such as environmental temperature and humidity, wind speed, light intensity, and other types of sensors. Currently, it is a hot topic how to collect accurate information, the main raw data for agricultural experts, monitored by these sensors timely. Most existing work in WSNs addresses their fundamental challenges, including power supply, limited memory, processing power and communication bandwidth and focuses entirely on their operating system and networking protocol design and implementation. However, it is not easy to find the self-localization capability of wireless sensor networks. Because of constraints on the cost and size of sensors, energy consumption, implementation environment and the deployment of sensors, most sensors do not know their locations. This paper provides maximum likelihood estimators for sensor location estimation when observations are time-of arrival (TOA) range measurement.

Ground-Platform Sensor Position Optimization Based Hybrid Time Difference of Arrival Method for Airborne Emitter (Hybrid TDOA 알고리즘 기반의 Airborne Emitter 위치탐지를 위한 Ground-Platform 센서의 위치 최적화)

  • Park, Jin-Oh;Lee, Woo-Seok;You, Byung-Sek;Kook, Chan-Ho;Chung, Jae-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.886-893
    • /
    • 2010
  • This paper considers the problem of time difference-of-arrival(TDOA) source localization when the TDOA and angle of arrival(AOA) measurements from an airborne emitter source are subject to ground-platform sensor position. The optimization of sensors' position is a challenging problem and a solution with good localization accuracy has yet to be found. This paper proposes an estimator that can achieve these purposes and provides optimized sensor position for good localization accuracy using the proposed estimator. The developed algorithm and sensor position are then examined under the special case of a single airborne source. The theoretical developments are supported by simulations.

Beacon Geolocation Scheme of COSPAS-SARSAT System for Heavy Disaster Environment (다중 재난 상황에 적합한 COSPAS-SARSAT 탐색구조 비컨 위치추정 기법)

  • Kim, Jaehyun;Lee, Sanguk;Sin, Cheonsig;Ahn, Woo-Geun
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.146-150
    • /
    • 2015
  • The COSPAS-SARSAT committee decides MEOSAR (Medium-Earth Orbit for search and rescue) service development for installing 406MHz SAR instruments on their respective MEO navigation satellite system of the United States, EU, and Russia, since 2000. The transmitted beacon signal is separately arrived by satellites with different FOA (Frequency of Arrival) and TOA (Time of Arrival). It is directly transferred to MEOLUT. In MEOLUT, a LUT track at least 3 or 4 satellites simultaneously and estimate location of beacon using time difference of arrival (TDOA) and frequency difference arrival (FDOA). But the transmitted distress signals may be overlapped each other because the distress beacons transmit signal on mean interval of 50 seconds in arbitrary time. It's difficult that simultaneously estimate location of beacon by current scheme for several overlapped distress signal. So we use cross ambiguity function (CAF) Map algorithm and present Multi-CAF MAP scheme in order to satisfy performance requirement of system. The performance is analyzed for COSAPS-SARSAT MEOSAR.

Development of Forecast Algorithm for Coronal Mass Ejection Speed and Arrival Time Based on Propagation Tracking by Interplanetary Scintillation g-Value

  • Park, Sa-Rah;Jeon, Ho-Cheol;Kim, Rok-soon;Kim, Jong-Hyeon;Kim, Seung-Jin;Cho, Junghee;Jang, Soojeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.43-50
    • /
    • 2020
  • We have developed an algorithm for tracking coronal mass ejection (CME) propagation that allows us to estimate CME speed and its arrival time at Earth. The algorithm may be used either to forecast the CME's arrival on the day of the forecast or to update the CME tracking information for the next day's forecast. In our case study, we successfully tracked CME propagation using the algorithm based on g-values of interplanetary scintillation (IPS) observation provided by the Institute for Space-Earth Environmental Research (ISEE). We were able to forecast the arrival time (Δt = 0.30 h) and speed (Δv = 20 km/s) of a CME event on October 2, 2000. From the CME-interplanetary CME (ICME) pairs provided by Cane & Richardson (2003), we selected 50 events to evaluate the algorithm's forecast capability. Average errors for arrival time and speed were 11.14 h and 310 km/s, respectively. Results demonstrated that g-values obtained continuously from any single station observation were able to be used as a proxy for CME speed. Therefore, our algorithm may give stable daily forecasts of CME position and speed during propagation in the region of 0.2-1 AU using the IPS g-values, even if IPS velocity observations are insufficient. We expect that this algorithm may be widely accepted for use in space weather forecasting in the near future.

A Study in Seismic Signal Analysis for the First Arrival Picking (초동발췌를 위한 탄성파 신호분석연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.131-137
    • /
    • 2007
  • With consideration of the first arrival picking methodology and inherent errors in picking process, I propose, from the computerization point of view, a practical algorithm for picking and error computation. The proposed picking procedure consists of 2-step; 1) picking the first coherent peak or trough events, 2) derive a line which approximates the record in the interval prior to the pick, and set the intercept time of the line as the first break. The length of fitting interval used in experiment, is few samples less than 1/4 width of the arriving wavelet. A quantitative measure of the error involved in first arrival picking is defined as the time length that needed to determine if an event is the first arrival or not. The time length is expressed as a function of frequency bandwidth of the signal and the S/N ratio. For 3 sets of cross-well seismic data, first breaks are picked twice, by manually, and by the proposed method. And at the same time, the error bound for each trace is computed. Experiment results show that good performance of the proposed picking method, and the usefulness of the quantitative error measure in pick-quality evaluation.