• Title/Summary/Keyword: Tm (melting temperature)

Search Result 40, Processing Time 0.026 seconds

Crystal structure and thermal properties of solution crystallized nylon 4,6 (용액 결정성장하의 Nylon 4,6 의 결정구조 및 열적성질)

  • 김연철;홍성권
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1993.05a
    • /
    • pp.99-100
    • /
    • 1993
  • Calorimetric (D.S.C) studies were carried out on the nylon 4,6 single crystals grown from 1,4-butanediol solution at various crystallisation temperatures, based on the assessment of the lamellar thickness by small angle x-ray scattering. Samples were annealed mainly ot get rid of residual solvents inside the crystals. The effect of annealing on the crystal perfection is inferred from the measured thermal properties of the crystals. Accordig to the scanning rates less than 80 K/min., D. S C. melting peaks indicate that changes in the internal morphology of nylon 4,6 crystals preapred at different crystallisation temeratures yield a thermodynamic melting temperature. Tm, of 319 $^{\circ}C$, for the infinitely extended crystal thickness (1/ι). The obtained heat of fusion value for the inginite crystal thickness, Ho, was 270 J/g from the plot of measured feat of fusion ($\Delta$Hm) vs. reciprocal crystal thickness (1/ι). based on these values, the fold surface energy, $\delta$e. of 65.4 erg/$\textrm{cm}^2$ was obtained from Hoffman-Waeeks equation. The thermodynamic melting temperature and heat of fusion of the infinite crystal thickness for the solution grow nylon 4,6 single crystals are found to be higher than of the reported corresponding solution grown nylon 6,6 single crystals. pbtained crystallinity from D. S. C measurements ranges from 40 to 50 %, which is close to the reported yalue for the nylon 6,6 single ctystals but lower than we expected.

  • PDF

Manufactures of dental casting Co-Cr-Mo based alloys in addition to Sn, Cu and analysis of infrared thermal image for melting process of its alloys (Sn 및 Cu를 첨가한 치과 주조용 Co-Cr-Mo계 합금제조 및 용해과정 분석)

  • Kang, Hoo-Won;Park, Young-Sik;Hwang, In;Lee, Chang-Ho;Heo, Yong;Won, Yong-Gwan
    • Journal of Technologic Dentistry
    • /
    • v.36 no.3
    • /
    • pp.141-147
    • /
    • 2014
  • Purpose: Dental casting #Gr I (Co-25Cr-5Mo-3Sn-1Mn-1Si), #Gr II (Co-25Cr-5Mo-5Cu-1Mn -1Si) and #Gr III (Co-25Cr-5Mo-3Sn-5Cu-1Mn-1Si) master alloys of granule type were manufactured the same as manufacturing processes for dental casting Ni-Cr and Co-Cr-Mo based alloys of ingot type. These alloys were analyzed melting processes with heating time of high frequency induction centrifugal casting machine using infrared thermal image analyzer. Methods: These alloys were manufactured such as; alloy design, the first master alloy manufatured using vacuum arc casting machine, melting metal setting in crucible, melting in VIM, pouring in the mold of bar type, cutting the gate and runner bar and polishing. These alloys were put about 30g/charge in the ceramic crucible of high frequency induction centrifugal casting machine and heat, Infrared thermal image analyzer indicated alloys in the crucible were set and operated. Results: The melting temperatures of these alloys measuring infrared thermal image analyzer were decreased in comparison with remanium$^{(R)}$ GM 800+, vera PDI$^{TM}$, Biosil$^{(R)}$ f, WISIL$^{(R)}$ M type V, Ticonium 2000 alloys of ingot type and vera PDS$^{TM}$(Aabadent, USA), Regalloy alloys of shot type. Conclusion: Co-Cr-Mo based alloy in addition to Sn(#Gr I alloy) were decreased the melting temperature with heating time of high frequency induction centrifugal casting machine using infrared thermal image analyzer.

Application of LATE-PCR to Detect Candida and Aspergillus Fungal Pathogens by a DNA Hybridization Assay

  • Gopal, Dhayaalini Bala;Lim, Chua Ang;Khaithir, Tzar Mohd Nizam;Santhanam, Jacinta
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.4
    • /
    • pp.358-364
    • /
    • 2017
  • Asymmetric PCR preferentially amplifies one DNA strand for use in DNA hybridization studies. Linear-After-The-Exponential-PCR (LATE-PCR) is an advanced asymmetric PCR method which uses innovatively designed primers at different concentrations. This study aimed to optimise LATE-PCR parameters to produce single-stranded DNA of Candida spp. and Aspergillus spp. for detection via probe hybridisation. The internal transcribed spacer (ITS) region was used to design limiting primer and excess primer for LATE-PCR. Primer annealing and melting temperature, difference of melting temperature between limiting and excess primer and concentration of primers were optimized. In order to confirm the presence of single-stranded DNA, the LATE-PCR product was hybridised with digoxigenin labeled complementary oligonucleotide probe specific for each fungal genus and detected using anti-digoxigenin antibody by dot blotting. Important parameters that determine the production of single-stranded DNA in a LATE-PCR reaction are difference of melting temperature between the limiting and excess primer of at least $5^{\circ}C$ and primer concentration ratio of excess primer to limiting primer at 20:1. LATE-PCR products of Candida albicans, Candida parapsilosis, Candida tropicalis and Aspergillus terreus at up to 1:100 dilution and after 1 h hybridization time, successfully hybridised to respective oligonucleotide probes with no cross reactivity observed between each fungal genus probe and non-target products. For Aspergillus fumigatus, LATE-PCR products were detected at 1:10 dilution and after overnight hybridisation. These results indicate high detection sensitivity for single-stranded DNA produced by LATE-PCR. In conclusion, this advancement of PCR may be utilised to detect fungal pathogens which can aid the diagnosis of invasive fungal disease.

Studies on the Ternary Blends of Liquid Crystalline Polymer and Polyesters

  • Kim, Seong-Hun;Kang, Seong-Wook
    • Fibers and Polymers
    • /
    • v.1 no.2
    • /
    • pp.83-91
    • /
    • 2000
  • Thermotropic liquid crystalline polymer made up of poly(p-hydroxybenzoate) (PHB)-poly(ethylene terephthalate)(PET) 8/2 copolyester, poly(ethylene 2,6-naphthalate) (PEN) and PET were mechanically blended to pursue the liquid crystalline phase of ternary blends. Complex viscosities of blends decreased with increasing temperature and PHB content. DSC thermal analysis indicated that glass transition temperature (Tg) and melting temperature (Tm) of blends increased with increasing PHB content. Both tensile strength and initial modulus increased with raising PHB content and take-up speed of monofilaments. In the WAXS diagram, only PEN crystal reflection at 2Θ=$15.5^{\circ}C$ appeared but PET crystal reflection was not shown in all compositions. The degree of transesterification and randomness of blends increased with blending time but sequential length of both PEN and PET segment decreased.

  • PDF

Synthesis of Acrylic Pressure-Sensitive Adhesive by Emulsion Polymerization (유화중합에 의한 수성 아크릴계 접착제의 합성)

  • Kim, Dong-yeub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.1
    • /
    • pp.45-50
    • /
    • 2006
  • In order to analyse the properties of the fiber-adhesive that was used as Flocking process we synthesized quaterpolymer with the variation of the types of monomer ratio by emulsion polymerization. We characterized the properties of this adhesive: Differential Scanning Calorimeter(DSC), Thermogravimetry Analysis(TGA), Raman spectroscopy. The polymer was synthesized by changing the using amount of 2-EHAM, and then we investigated the characteristics of glass transition temperature(Tg), melting temperature(Tm), thermal stability and hydroxyl group respectively. The optimum monomer composition was 36.84% EAM, 15.79% MAM, 42.1% 2-EHAM and 5.26% AAc.

  • PDF

Low Temperature Sintering of PZTN by the Liquid Phase Transient Processing (액상천이공정에 의한 PZTN의 저온소결에 관한 연구)

  • Kim, Chan-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.12
    • /
    • pp.593-598
    • /
    • 2001
  • Transient liquid phase processing was investigated to decrease processing temperatures while maintaining useful piezoelectric properties in the lead zirconate titanate (PZT) system. Niobium oxide$(Nb_2O_5)$ modified crystalline PZT (PZTN) powder was combined with lead silicate $(PS; PbO-SiO_2)$ glass powder and crystalline titania, zirconia, and niobia. Firing above the melting temperature of the lead silicate $(PS; Tm \risingdotseq\; 714^{\circk}C)$ resulted in liquid phase densification of the PZTN followed by dissolution of the titania, zirconia, and niobia into the liquid phase, and crystallization of additional PZTN. The addition of crystalline titania, zirconia, and niobia to react with the lead oxide from the lead silicate phase resulted in an increase in the dielectric and Piezoelectric properties.

  • PDF

Study on the structure of cAMP receptor protein(CRP) by temperature change (온도변화에 의한 cAMP 수용성 단백질(CRP)의 구조)

  • 주종호;구미자;강종백
    • Journal of Life Science
    • /
    • v.10 no.3
    • /
    • pp.279-285
    • /
    • 2000
  • CRP (cyclic AMP receptor protein) regulate transcription of catabolite-sensitive genes in Escherichia coli. Wild-type and mutant CRP (S83G and S128A) proteins were used to measure the thermal stability and the temperature-dependent structural change by proteolytic digestion, UV spectrophotometer and CD spectrapolarimeter. The result indicated that wild-type CRP was more thermally stable than the mutant CRPs in the presence of cAMP. At a low temperature, wild-type CRP with cAMP was more sensitive to subtilisin than the mutant CRPs. At a high temperature, there was no difference of sensitivity to subtilisin among wild-type, S83G and S128A CRPs. CD spectra suggested that the secondary structure of CRP was destroyed partially at a high temperature.

  • PDF

Preparation and Physical Properties of Biodegradable High Performance PLA Fiber using Process Parameters (용융방사에 의한 생분해성 고강도 PLA 섬유 제조 공정 상 주요 공정 변수에 관한 연구)

  • Jeung, Woo Chang;Kim, Sam Soo;Lee, Sang Oh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.197-206
    • /
    • 2022
  • The purpose of this study was to confirm the optimal spinning conditions for PLA (Polylactic acid) as a fiber forming polymer. According to the melt spinning test results of PLA, the optimal spinning temperature was 258℃. However, it needs to note that relatively high pack pressure was required for spinning at 258℃. At an elevated temperature, 262℃, mono filament was broken easily due to hydrolysis of PLA at a higher temperature. In case of fiber strength, it was confirmed that the draw ratios of 2.7 to 3.3 were optimal for maximum strength of melt spun PLA. Above the draw ratio, 3.3, the strength of the PLA fibers was lowered. It was presumed that cleavage of the PLA polymer chain over maximum elongation. The heat setting temperature of GR (Godet roller) showed that the maximum strength of the PLA fibers was revealed around 100℃. The degree of crystallinity and the strength of the PLA fibers were decreased above 100℃. The optimal take-up speed (Spinning speed) was around 4,000m/min. Thermal analysis of PLA showed 170℃ and 57℃ as Tm (melting temperature) and Tg (glass transition temperature), respectively.

A Study on Thermal Properties and Impurities Measurement of Semiconductive Shield by ICP-AES (ICP-AES에 의한 반도전재료의 불순물 측정 및 열적특성에 관한 연구)

  • Lee, Kyoung-Yong;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.489-494
    • /
    • 2004
  • In this paper, we investigated impurities content and thermal properties showing by changing the content of carbon black which is semiconductive materials for underground power transmission. Specimens were made of sheet form with the three of existing resins and the nine of specimens for measurement. Impurities content of specimens was measured by ICP-AES(Inductively Coupled Plasma Atomic Emission Spectrometer), and density of specimens were measured by density meter. And then heat capacity(${\Delta}H$) and melting temperature(Tm), specific heat(Cp) were measured by DSC(Differential Scanning Calorimetry). The dimension of measurement temperature was $0[^{\circ}C]\;to\;200[^{\circ}C]$, and rising temperature was $4[^{\circ}C/min]$. Impurities content was highly measured according to increasing the content of carbon black from this experimental result also density was increased according to these properties. Specially, impurities content values of the A1 and A2 of existing resins were measured more than 4000[ppm]. Heat capacity, melting temperature, and specific heat from the DSC results were simultaneously decreased according to increasing the content of carbon black. Because metallic impurities of carbon black having Fe, Co, Mn, A1 and Zn are rapidly passed kinetic energy increasing the number of times breaking during the unit time with the near particles according to increasing vibration of particles by the applied heat energy.

  • PDF

Studios on the Thermal Properties of Silane Crosslinked Polyethylene Prepared by Various Crosslinking Conditions (Silane 가교 PE의 가교조건에 따른 열적특성 변화에 관한 연구)

  • Sohn, Ho-Soung;Suh, Kyung-Do
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.1036-1043
    • /
    • 1994
  • The silane crosslinking method was applied for the crosslinking of polyethylene (PE). Crosslinking of PE was performed by, first grafting vinyltrimethoxysilane(VTMOS) to the main chain of PE using an extruder at $200{\sim}210^{\circ}C$, followed by exposure to three different silane crosslinking conditions (1. immersed in $80^{\circ}C$ water, 2. at $80^{\circ}C$ air forced convection oven, 3. exposed to air at room temperature ). The thermal characteristic changes of PE resins with respect to the silane crosslinking conditions were studied by measuring the crystalline melting temperature, density and crosslinking reaction rate. Because silane crosslinking was carried out at solid state, crystalline melting temperature, crystallinity, crystal growth rate, crosslinking reaction rate and the change in the density of silane crosslinked PE were affected by crosslinking condition and the type of base resin. The properties of silane crosslinked PE were different from those of Peroxide crosslinked PE which was crosslinked at the molten state. It was found, from the result of DSC analysis, that silane crosslinked linear low density polyethylene(LLDPE) crosslinked at room temperature had no secondary melting peak because the crosslinking reaction proceeds slowly as the crystalline grows. After crystallization, the melting point of PE was lowered by crystalline interruption of crosslinked site.

  • PDF