• Title/Summary/Keyword: Titanium oxide films

Search Result 95, Processing Time 0.025 seconds

The Biocompatibility of HA Film Deposition on Anodized Titanium Alloy

  • Lee, Kang;Choe, Han-Choel;Kim, Byung-Hoon;Ko, Yeong-Mu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.213-214
    • /
    • 2009
  • A thin film hydroxyapatite (HA) films was deposited on anodized titanium by RF sputtering method. The anodized titanium enhanced the biocompatibility of the Ti and the bioactivity was improved further by the HA deposited on the anodized Ti. $TiO_2$ layer with $0.2{\sim}0.5{\mu}$ diameter pore size was formed on the Ti surface by anodization. Anodized $TiO_2$ layer analysis HA film deposited, oxide pore size and number decreased compared with non-HA deposited surface. The corrosion resistance of HA deposited/anodized Ti was higher than that of the non-treatment Ti alloy in Hank's solution, indicating better protective effect. From the results of cell culture using MTT assays, the best cell proliferation showed in HA deposited surface after anodization of Ti surfaces compared with another surface treatment.

  • PDF

Low Temperature Synthesis of Transparent, Vertically Aligned Anatase TiO2 Nanowire Arrays: Application to Dye Sensitized Solar Cells

  • In, Su-Il;Almtoft, Klaus P.;Lee, Hyeon-Seok;Andersen, Inge H.;Qin, Dongdong;Bao, Ningzhong;Grimes, C.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1989-1992
    • /
    • 2012
  • We present a low temperature (${\approx}70^{\circ}C$) method to prepare anatase, vertically aligned feather-like $TiO_2$ (VAFT) nanowire arrays $via$ reactive pulsed DC magnetron sputtering. The synthesis method is general, offering a promising strategy for preparing crystalline nanowire metal oxide films for applications including gas sensing, photocatalysis, and 3rd generation photovoltaics. As an example application, anatase nanowire films are grown on fluorine doped tin oxide coated glass substrates and used as the photoanode in dye sensitized solar cells (DSSCs). AM1.5G power conversion efficiencies for the solar cells made of 1 ${\mu}m$ thick VAFT have reached 0.42%, which compares favorably to solar cells made of the same thickness P25 $TiO_2$ (0.35%).

Effective Refractive Index of Dye-Sensitized Solar Cell Using Transmittance and Reflectance Measurements (투과 및 반사율 측정을 이용한 염료감응태양전지의 유효 굴절률 모델링)

  • Kim, Hyeong Seok;Lee, Joocheol;Shin, Myunghun
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.91-96
    • /
    • 2015
  • Optical modeling and characterization of transparent dye-sensitized solar cells (DSC) are presented to design and estimate DSC devices numerically. In order to model the inhomogeneous active layer of DSC, the porous structure of titanium oxide ($TiO_2$) and dye mixture, we prepared films consisting of layer by layer of the DSC's basic materials sequentially, and characterized the optical parameters of the films with the effective refractive index, which was extracted from the transmittance and reflectance measurements in ultra violet to near infra-red range. By using the effective refractive index, we made the optical model for DSC, and demonstrated that the optical model based on effective refractive index can be used to design and evaluate the performance of transparent-type DSC modules.

Photoelectrochemical Degradation of Perchlorate Ions by TiO2 (산화티탄의 광전기화학 특성을 이용한 퍼클로레이트 이온 제거)

  • Min, Hyung-Seob;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.18 no.8
    • /
    • pp.432-437
    • /
    • 2008
  • Titanium oxide films and powders are attached onto carbon cloths via RF reactive sputtering and an epoxy resin mixture, respectively. $TiO_2$/carbon composite materials were used to investigate the photoelectrochemical degradation of perchlorate ions in water. The energy band gaps of the RF-sputtered $TiO_2$ thin films ranged from 3.35-3.44 eV. A photocurrent of the powdered $TiO_2$ as illuminated by ultra-violet light for 30 min. was $2.79\;mA/cm^2$. Perchlorate ions in water were shown to be degradable by a UV-illuminated $TiO_2$ powder/carbon/Nafion/carbon composite.

Dielectric Properties of Poly(vinyl phenol)/Titanium Oxide Nanocomposite Thin Films formed by Sol-gel Process

  • Myoung, Hey-J;Kim, Chul-A;You, In-Kyu;Kang, Seung-Y;Ahn, Seong-D;Kim, Gi-H;Oh, ji-young;Baek, Kyu-Ha;Suh, Kyung-S;Chin, In-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1572-1575
    • /
    • 2005
  • Poly(vinyl phenol)(PVP)/$TiO_2$ nanocomposite the films have been prepared incorporating metal alkoxide with vinyl polymer to obtain high dielectric constant gate insulating material for a organic thin film transistor. The surface composition, the morphology, and the thermal and electrical properties of the hybrid nanocomposite films were observed by ESCA, scanning electron microscopy (SEM), atomic force microscopy(AFM), and thermogravimetric analysis (TGA). Thin hybrid films exhibit much higher dielectric constants (7.79 at 40wt% metal alkoxide).

  • PDF

TiO2 Thin Film Growth Research to Improve Photoelectrochemical Water Splitting Efficiency (TiO2 박막 성장에 의한 광전기화학 물분해 효율 변화)

  • Seong Gyu Kim;Yu Jin Jo;Sunhwa Jin;Dong Hyeok Seo;Woo-Byoung Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.202-207
    • /
    • 2024
  • In this study, we undertook detailed experiments to increase hydrogen production efficiency by optimizing the thickness of titanium dioxide (TiO2) thin films. TiO2 films were deposited on p-type silicon (Si) wafers using atomic layer deposition (ALD) technology. The main goal was to identify the optimal thickness of TiO2 film that would maximize hydrogen production efficiency while maintaining stable operating conditions. The photoelectrochemical (PEC) properties of the TiO2 films of different thicknesses were evaluated using open circuit potential (OCP) and linear sweep voltammetry (LSV) analysis. These techniques play a pivotal role in evaluating the electrochemical behavior and photoactivity of semiconductor materials in PEC systems. Our results showed photovoltage tended to improve with increasing thickness of TiO2 deposition. However, this improvement was observed to plateau and eventually decline when the thickness exceeded 1.5 nm, showing a correlation between charge transfer efficiency and tunneling. On the other hand, LSV analysis showed bare Si had the greatest efficiency, and that the deposition of TiO2 caused a positive change in the formation of photovoltage, but was not optimal. We show that oxide tunneling-capable TiO2 film thicknesses of 1~2 nm have the potential to improve the efficiency of PEC hydrogen production systems. This study not only reveals the complex relationship between film thickness and PEC performance, but also enabled greater efficiency and set a benchmark for future research aimed at developing sustainable hydrogen production technologies.

$TiO_2$ Thin Film Patterning on Modified Silicon Surfaces by MOCVD and Microcontact Printing Method

  • 강병창;이종현;정덕영;이순보;부진효
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.77-77
    • /
    • 2000
  • Titanium oxide (TiO2) thin films have valuable properties such as a high refractive index, excellent transmittance in the visible and near-IR frequency, and high chemical stability. Therefore it is extensively used in anti-reflection coating, sensor, and photocatalysis as electrical and optical applications. Specially, TiO2 have a high dielectric constant of 180 along the c axis and 90 along the a axis, so it is highlighted in fabricating dielectric capacitors in micro electronic devices. A variety of methods have been used to produce patterned self-assembled monolayers (SAMs), including microcontact printing ($\mu$CP), UV-photolithotgraphy, e-beam lithography, scanned-probe based micro-machining, and atom-lithography. Above all, thin film fabrication on $\mu$CP modified surface is a potentially low-cost, high-throughput method, because it does not require expensive photolithographic equipment, and it produce micrometer scale patterns in thin film materials. The patterned SAMs were used as thin resists, to transfer patterns onto thin films either by chemical etching or by selective deposition. In this study, we deposited TiO2 thin films on Si (1000 substrateds using titanium (IV) isopropoxide ([Ti(O(C3H7)4)] ; TIP as a single molecular precursor at deposition temperature in the range of 300-$700^{\circ}C$ without any carrier and bubbler gas. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase and stoichimetric ratio of Ti and O were successfully deposited on Si(100) at temperature as low as 50$0^{\circ}C$. XRD and TED data showed that below 50$0^{\circ}C$, the TiO2 thin films were dominantly grown on Si(100) surfaces in the [211] direction, whereas with increasing the deposition temperature to $700^{\circ}C$, the main films growth direction was changed to be [200]. Two distinct growth behaviors were observed from the Arhenius plots. In addition to deposition of THe TiO2 thin films on Si(100) substrates, patterning of TiO2 thin films was also performed at grown temperature in the range of 300-50$0^{\circ}C$ by MOCVD onto the Si(100) substrates of which surface was modified by organic thin film template. The organic thin film of SAm is obtained by the $\mu$CP method. Alpha-step profile and optical microscope images showed that the boundaries between SAMs areas and selectively deposited TiO2 thin film areas are very definite and sharp. Capacitance - Voltage measurements made on TiO2 films gave a dielectric constant of 29, suggesting a possibility of electronic material applications.

  • PDF

Effect of Titanium Addition on Indium Zinc Oxide Thin Film Transistors by RF-magnetron Sputtering (RF-magnetron sputtering을 이용한 TiIZO 기반의 산화물 반도체에 대한 연구)

  • Woo, Sanghyun;Lim, Yooseong;Yi, Moonsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.115-121
    • /
    • 2013
  • We fabricated thin film transistors (TFTs) using TiInZnO(TiIZO) thin films as active channel layer. The thin films of TiIZO were deposited at room temperature by RF-magnetron co-sputtering system from InZnO(IZO) and Ti targets. We examined the effects of titanium addition by X-ray diffraction, X-ray photoelectron spectroscopy and the electrical characteristics of the TFTs. The TiIZO TFTs were investigated according to the radio-frequency power applied to the Ti target. We found that the transistor on-off currents were greatly influenced by the composition of titanium addition, which suppressed the formation of oxygen vacancies, because of the stronger oxidation tendency of Ti relative to that of Zn or In. A optimized TiIZO TFT with rf power 40W of Ti target showed good performance with an on/off current ratio greater than $10^5$, a field-effect mobility of 2.09 [$cm^2/V{\cdot}s$], a threshold voltage of 2.2 [V] and a subthreshold swing of 0.492 [V/dec.].

Characteristics of Carbon-Doped Mo Thin Films for the Application in Organic Thin Film Transistor (유기박막트랜지스터 응용을 위한 탄소가 도핑된 몰리브덴 박막의 특성)

  • Dong Hyun Kim;Yong Seob Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.588-593
    • /
    • 2023
  • The advantage of OTFT technology is that large-area circuits can be manufactured on flexible substrates using a low-cost solution process such as inkjet printing. Compared to silicon-based inorganic semiconductor processes, the process temperature is lower and the process time is shorter, so it can be widely applied to fields that do not require high electron mobility. Materials that have utility as electrode materials include carbon that can be solution-processed, transparent carbon thin films, and metallic nanoparticles, etc. are being studied. Recently, a technology has been developed to facilitate charge injection by coating the surface of the Al electrode with solution-processable titanium oxide (TiOx), which can greatly improve the performance of OTFT. In order to commercialize OTFT technology, an appropriate method is to use a complementary circuit with excellent reliability and stability. For this, insulators and channel semiconductors using organic materials must have stability in the air. In this study, carbon-doped Mo (MoC) thin films were fabricated with different graphite target power densities via unbalanced magnetron sputtering (UBM). The influence of graphite target power density on the structural, surface area, physical, and electrical properties of MoC films was investigated. MoC thin films deposited by the unbalanced magnetron sputtering method exhibited a smooth and uniform surface. However, as the graphite target power density increased, the rms surface roughness of the MoC film increased, and the hardness and elastic modulus of the MoC thin film increased. Additionally, as the graphite target power density increased, the resistivity value of the MoC film increased. In the performance of an organic thin film transistor using a MoC gate electrode, the carrier mobility, threshold voltage, and drain current on/off ratio (Ion/Ioff) showed 0.15 cm2/V·s, -5.6 V, and 7.5×104, respectively.

Studies on the Electrochemical Properties of $TiO_{2-x}$ Thin Films Prepared by Air Oxidation and Water Vapor Oxidation (공기 산화와 수증기 산화에 의해 제조된 $TiO_{2-x}$ 박막의 전기화학적 성질에 관한 연구)

  • Yong-Kook Choi;Ki-Hyung Chjo;Q-Won Choi;Jeong-Sup Seong;Jeong-Geun Oh
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.4
    • /
    • pp.401-407
    • /
    • 1993
  • The titanium oxide thin films were prepared by air oxidation and water vapor oxidation. The electrochemical properties of the electrodes were studied in 1M NaOH solution. The peak potentials of oxygen reduction from cyclic voltammogram techniques were observed at aroung -0.9 ∼ -1.0 V vs. SCE and the reaction was totally irreversible process. The electrochemical properties of titanium dioxide electrodes prepared by water vapor oxidation exhibited different from the air oxidized electrodes, but it was similar to single crystal $TiO_2$. The peak potentials of oxygen reduction were observed at slightly more positive than flat band potentials and depended on pH.

  • PDF