• Title/Summary/Keyword: Titanium oxide films

Search Result 95, Processing Time 0.027 seconds

Characteristics of Fluoride Releasing of Anodized Titanium Implant (양극산화 아크방전 처리한 티타늄 임플란트의 불소방출 특성)

  • Kim, Ha-young;Song, Kwang-yeob;Bae, Tae-sung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.4
    • /
    • pp.361-369
    • /
    • 2008
  • The purpose of this study is to make porous oxide film on the surfaces of pure Ti through anodic spark discharge in electrolytic solution containing calcium and phosphate ions, to improve osseointergration by treating fluoride agent. In addition, it is to evaluate the fluoride modified effect on the surface. Commercial pure Ti plate with $20{\times}10{\times}2mm$ and Ti wire with a diameter of 1.5mm and a total length of 15mm were used. After making titanium oxide films converted by anodic spark discharge, anodizing was performed. Fluoride was spreaded to titanium laboratory plate and maintained for 30 minutes after anodizing breakdown. Fluoride ion discharge amount was measured per 24 hours after dipping titanium plate into saline (10ml) and sustaining 90rpm in a pyrostat. Some plates and wires were dipped in Hanks solutions for a month to examine biocompatibility using SEM and XRD. $TiO_2$ film formed by anodic discharge technique showed great roughness and uniform pores which were $1{\sim}3{\mu}m$ in a diameter. Roughness of the films treated with anodic discharge after blasting were higher than the turned ones(P<0.05). Rapid surface activity was observed in the samples treated with $TiF_3$ agent, which immersed in Hanks solution for 30 days. Taking the results into consideration, the fluoride modified implant with anodic discharge demonstrates that it makes uniformly porous oxide film on the surface of implant and properly increase roughness for osseointegration. The implants will achieve greater bone integration after short healing time by improving surface activity.

A Study on Energy Band Change and Stability in Photoelectrolysis by Use of Titanium Oxide Films on Ti-Bi Alloy (Ti-Bi 합금 위에 형성된 산화티타늄 피막의 광 전기분해시 에너지밴드와 안정성에 관한 연구)

  • Park, Seong-Yong;Cho, Byung-Won;Yun, Kyung-Suk
    • Journal of Hydrogen and New Energy
    • /
    • v.5 no.1
    • /
    • pp.41-49
    • /
    • 1994
  • Ti-Bi alloy was prepared by arc melting of appropriate amounts of titanium and bismuth powder. The photocurrent($I_{ph}$) of Ti-Bi oxide electrode was increased with the increase of Bi content, up to 10wt%. The maximum $I_{ph}$ showed $7.6mA/cm^2$ at V=0.5V vs. SCE. The band gap energy of Ti-Bi oxide electrode was observed to 3.0~2.87eV. Surface barrier($V_s$) of Ti-10Bi oxide electrode showed maximum value(1.08V) but didn't exceed 1.23V, then it was impossible to run $H_2$ generation without any other energy sources other than the light. Ti-Bi oxide electrode was found to be quite stable under alkaline solution and showed no signs of photodecomposition.

  • PDF

A.c. Impedance Measurement of CP-Ti in 0.1 M NaOH Solution

  • Moon, Sungmo;Kwon, Mikyung;Kim, Jusuk
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.185-189
    • /
    • 2012
  • A.c. impedances of mechanically polished CP-Ti specimens were measured at open-circuit potential (OCP) with immersion time and under applied anodic potentials between -0.2 and 1 $V_{Ag/AgCl}$ in 0.1 M NaOH solution. Capacitances of native oxide films ($C_{ox,na}$) grown naturally and capacitances of anodic oxide films ($C_{ox,an}$) formed under applied anodic potentials were obtained to examine the growth of native and anodic oxide films in 0.1 M NaOH solution and how to use $C_{ox,na}$ for the surface area measurement of Ti specimen. $1/C_{ox,na}$ and $1/C_{ox,an}$ appeared to be linearly proportional to OCP and applied potential ($E_{app}$), with proportional constants of 0.086 and 0.051 $uF^{-1}\;V^{-1}$, respectively. The $C_{ox,na}$ also appeared to be linearly proportional to geometric surface area of the mechanically polished CP-Ti fixture specimen, with proportional constants of 11.3 and $8.5{\mu}F\;cm^{-2}$ at -0.45 $V_{Ag/AgCl}$ and -0.25 $V_{Ag/AgCl}$ of OCPs, respectively, in 0.1 M NaOH solution. This linear relationship between $C_{ox,na}$ and surface area is suggested to be applicable for the measurement of real surface area of Ti specimen.

Development and Application of Group IV Transition Metal Oxide Precursors

  • Kim, Da Hye;Park, Bo Keun;Jeone, Dong Ju;Kim, Chang Gyoun;Son, Seung Uk;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.303.2-303.2
    • /
    • 2014
  • The oxides of group IV transition metals such as titanium, zirconium, hafnium have many important current and future application, including protective coatings, sensors and dielectric layers in thin film electroluminescent (TFEL) devices. Recently, group IV transition metal oxide films have been intensively investigated as replacements for SiO2. Due to high permittivities (k~14-25) compared with SiO2 (k~3.9), large band-gaps, large band offsets and high thermodynamic stability on silicon. Herein, we report the synthesis of new group IV transition metal complexes as useful precursors to deposit their oxide thin films using chemical vapor deposition technique. The complexes were characterized by FT-IR, 1H NMR, 13C NMR and thermogravimetric analysis (TGA). Newly synthesised compounds show high volatility and thermal stability, so we are trying to deposit metal oxide thin films using the complexes by Atomic Layer Deposition (ALD).

  • PDF

Crystallization Characteristics of Reactively Sputtered Titanium Oxide Thin Films (반응성 스퍼터링된 산화 티타늄 박막의 결정화 특성)

  • Lee, Pil-H.;Ko, Kyung-H.;Ahn, Jae-H.;Lee, Soon-I.
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.852-857
    • /
    • 1996
  • Crystallization characteristics of titanium oxide thin film during post-annealing of reactive sputter deposition were studied. Amorphous phases of as-deposited films were crystallized into rutile after annealing at $900^{\circ}C$ and anatase at $500^{\circ}C$, respectively when $O_2$ concentration during sputtering was more than 15%. However, rutile was the only phase obtainable after annealing if %$O_2$ was less than 10%. For these films, Magneli phase($Ti_nO_{2n-1}$) were crystallized below $500^{\circ}C$ at first place due to slow oxidation of nonstoichiometric films but $500^{\circ}{\sim}600^{\circ}C$ anatase with nonstoichiometry was crystallized for a short period. It was, therefore, concluded that crystal growth can proceed without phase transition if stoichiometric phase is formed at the first stage of crystallization, and that rutile, the most stable phase, was resulted from any oxygen deficient nonstoichiometric films.

  • PDF

Sol-gel deposited TiInO thin-films transistor with Ti effect

  • Kim, Jung-Hye;Son, Dae-Ho;Kim, Dae-Hwan;Kang, Jin-Kyu;Ha, Ki-Ryong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.200-200
    • /
    • 2010
  • In recent times, metal oxide semiconductors thin films transistor (TFT), such as zinc and indium based oxide TFTs, have attracted considerable attention because of their several advantageous electrical and optical properties. There are many deposition methods for fabrication of ZnO-based materials such as chemical vapor deposition, RF/DC sputtering and pulsed laser deposition. However, these vacuum process require expensive equipment and result in high manufacturing costs. Also, the methods is difficult to fabricate various multicomponent oxide semiconductor. Recently, several groups report solution processed metal oxide TFTs for low cost and non vacuum process. In this study, we have newly developed solution-processed TFTs based on Ti-related multi-component transparent oxide, i. e., InTiO as the active layer. We propose new multicomponent oxide, Titanium indium oxide(TiInO), to fabricate the high performance TFT through the sol-gel method. We investigated the influence of relative compositions of Ti on the electrical properties. Indium nitrate hydrate [$In(NO^3).xH_2O$] and Titanium isobutoxide [$C_{16}H_{36}O_4Ti$] were dissolved in acetylacetone. Then monoethanolamine (MEA) and acetic acid ($CH_3COOH$) were added to the solution. The molar concentration of indium was kept as 0.1 mol concentration and the amount of Ti was varied according to weighting percent (0, 5, 10%). The complex solutions become clear and homogeneous after stirring for 24 hours. Heavily boron (p+) doped Si wafer with 100nm thermally grown $SiO_2$ serve as the gate and gate dielectric of the TFT, respectively. TiInO thin films were deposited using the sol-gel solution by the spin-coating method. After coating, the films annealed in a tube furnace at $500^{\circ}C$ for 1hour under oxygen ambient. The 5% Ti-doped InO TFT had a field-effect mobility $1.15cm^2/V{\cdot}S$, a threshold voltage of 4.73 V, an on/off current ratio grater than $10^7$, and a subthreshold slop of 0.49 V/dec. The 10% Ti-doped InO TFT had a field-effect mobility $1.03\;cm^2/V{\cdot}S$, a threshold voltage of 1.87 V, an on/off current ration grater than $10^7$, and a subthreshold slop of 0.67 V/dec.

  • PDF

Sputter Deposition and Surface Treatment of $TiO_{2}$ films for Dye-Sensitized Solar Cells using Reactive RF Plasma (RF 스퍼터링 증착된 $TiO_{2}$ 박막의 염료감응형 태양전지 적용 연구)

  • Kim, Mi-Jeong;Seo, Hyun-Woong;Choi, Jin-Young;Jo, Jae-Suk;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.309-312
    • /
    • 2007
  • Sputter deposition followed by surface treatment was studied using reactive RF plasma as a method for preparing titanium oxide($TiO_{2}$) films on indium tin oxide(ITO) coated glass substrate for dye-sensitized solar cells(DSSCs). Anatase structure $TiO_{2}$ films deposited by reactive RF magnetron sputtering under the conditions of $Ar/O_{2}$(5%) mixtures, RF power of 600W and substrate temperature of $400^{\circ}C$ were surface-treated by inductive coupled plasma(ICP) with $Ar/O_{2}$ mixtures at substrate temperature of $400^{\circ}C$, and thus the films were applied to the DSSCs, The $TiO_{2}$ Films made on these exhibited the BET specific surface area of 95, the pore volume of $0.3cm^{2}$ and the TEM particle size of ${\sim}25$ nm. The DSSCs made of this $TiO_{2}$ material exhibited an energy conversion efficiency of about 2.25% at $100mW/cm^{2}$ light intensity.

  • PDF

A Study on the Characteristics of Dye-sensitized Solar Cell Module Using Titanium Thin Film (티타늄 박막을 이용한 염료감응형 태양전지 모듈 특성에 관한 연구)

  • Oh, Byeong-Yun;Kim, Phil-Jung
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.69-75
    • /
    • 2021
  • In this work, we consider the fabrication method and electrical characteristics of dye-sensitized solar cells (DSSCs), which use titanium (Ti) metal thin films to replace expensive fluorine tin oxide (FTO) electrodes. The thickness of the Ti thin film was changed by adjusting the deposition time of the Ti, and the surface resistance decreased as the thickness of the Ti thin film became thicker. The thickness of the Ti thin film was shown to be similar to the surface resistance of the FTO thin film at approximately 190nm and the DSSC with a thickness of approximately 250nm showed the highest energy conversion efficiency of 4.24%. Furthermore, the possibility of commercialization was confirmed by fabricating and evaluating the DSSC module.

Transmission and Durability of Electrochromic WO3 Thin Films (전기적착색 $WO_3$ 박막의 투과율과 내구성)

  • Lee, Kil-Dong
    • Solar Energy
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • Electrochromic $WO_3$ thin films were prepared by electron beam deposition. The transmission and durability of films were investigated. Coloring and bleaching experiments were repeated in an electrolyte of propylene carbonate with 0.6M of $LiClO_4$ by cyclic voltammetry. Spectrophotometer was used to measure the transmission in the degraded films. The 5000 ${\AA}$ thick film was found to be the stable after repeated cycles. The durability of the annealed film also showed improvements over unannealed samples. Tungsten oxide films with titanium content of about $10{\sim}15$ mol% was found to be most stable, undergoing the least degradation during the repeated cycles.

  • PDF