• Title/Summary/Keyword: Titanium dioxides ($TiO_2$)

Search Result 13, Processing Time 0.025 seconds

Preparation of $TiO_2$ Powder by Sol-Gel Method and Their Photocatalytic Decomposition Effect of Synthetic Detergents for Kitchen Use (졸-겔법에 의한 $TiO_2$ 분체 합성 및 주방용 합성세제의 광분해 효과)

  • Chung, Young-Joon;Roo, Wan-Ho;Yang, Chun-Hoe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.140-147
    • /
    • 2004
  • An aqueous solution of a commercial liquid synthetic detergent for kitchen use was photodecomposed in the presence of titanium dioxides powder under an atmosphere of air at room temperature. Titanium dioxides were prepared by sol-gel method from titanium iso-propoxide at different R ratio($H_2O$/titanium iso-propoxide) and calcined at $500^{\circ}C$. All titanium dioxides were characterized by XRD, BET surface area analyzer and UV-VIS spectrometer. The surface area of titanium dioxides prepared at R ratio=6 appeared higher volume about 20% than commercial $TiO_2$ catalysts. XRD patterns of titania particles were observed mixing phase together with rutile and anatase type. Titanium dioxides prepared by sol-gel method show higher activity about 6% than commercial $TiO_2$ catalysts on the photocatalytic degradation of a commercial liquid synthetic detergent for kitchen. The concentration of the detergent decreased to about 90% of its initial value at illumination times of 2 hour. Illumination for 30 minutes decreased the concentration of oxygen to about one-fifth of the initial value.

A Photocatalytic Degradation of Synthetic Detergent over $TiO_2$ Catalysts Prepared by Sol-Gel Method (졸-겔법으로 제조된 $TiO_2$촉매에 의한 합성세제의 광분해)

  • 양천회;홍필선
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.76-82
    • /
    • 2001
  • An aqueous solution of a commercial liquid synthetic detergent for kitchen use was photodecomposed in the presence of titanium dioxides ponder under an atmosphere of air at room temperature. Titanium dioxides were prepared by sol-gel method from titanium iso-propoxide at different R R ratio($H_2O$/titanium iso-propoxide) and calcined at $500^{\circ}C$. All titanium dioxides m characterized by XRD, BET surface area analyzer and UV-VIS spectrometer. The surface mea of titanium dioxides prepared at R ratio=6 appeared higher volume about 20% than commercial $TiO_2$ catalyses. XRD patterns of titania particles were observed mixing phase together with rutile and anatase type. Titanium dioxides prepared by sol-gel method show higher activity about 6% than commercial $TiO_2$ catalysts on the Photocatalytic foundation of a commercial liquid synthetic detergent for kitchen. The concentration of the detergent decreased to about 90%, of its initial value at illumination times of 2 hour. illumination for 30 minutes decreased the concentration of oxygen to about one-fifth of the initial value.

  • PDF

Adsorption Kinetic Study of Ruthenium Complex Dyes onto TiO2 Anodes for Dye-sensitized Solar Cells (DSSCs) (염료감응 태양전지용 루테늄 금속착체 염료의 이산화티타늄 전극에 대한 동적 흡착 연구)

  • An, Byeong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.929-934
    • /
    • 2011
  • The adsorption kinetic study of ruthenium complex, N3, onto nanoporous titanium dioxide ($TiO_2$) photoanodes has been carried out by measuring dye uptake in-situ. Three simplified kinetic models including a pseudo first-order equation, pseudo second-order equation and intraparticle diffusion equation were chosen to follow the adsorption process. Kinetic parameters, rate constant, equilibrium adsorption capacities and related coefficient coefficients for each kinetic model were calculated and discussed. It was shown that the adsorption kinetics of N3 dye molecules onto porous $TiO_2$ obeys pseudo second-order kinetics with chemisorption being the rate determining step. Additionally the heterogeneous surface and the pore size distribution of porous $TiO_2$ adsorbents were also discussed.

Improving the Photo-stability of p-aramid Fiber by TiO2 Nanosol (TiO2 sol-gel 합성에 의한 파라 아라미드 섬유의 내광성 증진 연구)

  • Park, Sung-Min;Kwon, Il-Jun;Sim, Ji-Hyun;Lee, Jae-Ho;Kim, Sam-Soo;Lee, Mun-Cheul;Choi, Jong-Seok
    • Textile Coloration and Finishing
    • /
    • v.25 no.2
    • /
    • pp.126-133
    • /
    • 2013
  • Although para-aramid fibers poss higher mechanical properties, they show very low resistance to sunlight exposure. This paper studied on the effect of nano-sol coated $TiO_2$ to improve the photo-stability of p-aramid fibers. Titanium dioxides were prepared by sol-gel method from titanium iso-propoxide at different R ratio ($H_2O$/titanium iso-propoxide). All samples were characterized by XRD, TEM and UV-vis spectrometer. The mechanical properties of p-aramid fabrics by $TiO_2$ nano-sol coating before and after sunlight irradiation were measured with tensile tester. XRD pattern of titanium dioxide particles was observed by mixing phase together with rutile and anatase type. The results showed, after sunlight irradiation, the decreased mechanical properties of the fiber. Furthermore, the sunlight irradiation obviously deteriorated the surface and defected areas of the fiber severely by photo-induced chain scission and end group oxidation in air.

Effect of deposition pressure on the morphology of TiO2 nanoparticles deposited on Al2O3 powders by pulsed laser deposition (펄스레이저 증착법에 의한 Al2O3 입자 표면 위 TiO2 나노입자의 코팅)

  • Choi, Bong Geun;Kim, So Yeon;Park, Cheol Woo;Park, Jae Hwa;Hong, Yoon Pyo;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.4
    • /
    • pp.167-172
    • /
    • 2013
  • Titanium dioxides nanoparticles coated aluminum oxide powders were fabricated by pulsed laser deposition (PLD) with Nd : YAG laser at 266 nm. The Pulse laser energy is 100 mJ/pulse. During the irradiation of the focused laser on the $TiO_2$ target, Ar gas is supplied into the chamber. The gas pressure is varied in a range of $1{\times}10^{-2}$ to 100 Pa. Titanium dioxides nanoparticles deposited aluminum oxide powders were characterized by using energy dispersive X-ray spectroscopy (EDX), high resolution transmission electron microscopy (HR-TEM), in order to understand the effect of Ar background gas on surface morphology and properties of the powders. The coated $TiO_2$ nanoparticles had nanosized spherical shape and the crystallite sizes of 10~30 nm. The morphology of coated $TiO_2$ nanoparticles is not affected by gas pressure. However, the particle size and crystallinity slightly increased with the increase of gas pressure. According to this technique, the size and crystallinity of nanoparticles can be easily controlled by controlling pressure during the laser irradiation.

Dye-sensitized Solar Cells Based on Fluoran Leuco Sensitizers (플루오란 로이코 염료를 이용한 염료감응형 태양전지)

  • Jung, Hye-In;An, Byeong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.240-245
    • /
    • 2013
  • The utilization of a fluoran leuco sensitizer, 2-anilino-6-dibutyl amino-3-methylfluoran (ODB-2), for dye-sensitized solar cells (DSSCs) was investigated through the examination of the adsorption of ODB-2 molecules onto the surfaces of porous titanium dioxide (titania, $TiO_2$) films and the photovoltaic properties of ODB-2-based DSSCs. Despite of the absence of the specific anchoring groups with titania, ODB-2 dye molecules were spontaneously adsorbed onto the titania surfaces because the lactone ring in ODB-2 was opened and changed into the carboxylic acid (-COOH) by releasing protons from the surfaces ($TiOH_2{^+}$) of titania, which consequently leads to the chemisorption reaction of ODB-2 molecules to the active sites of titania. DSSCs based on ODB-2 exhibited typical photovoltaic properties with an open-circuit voltage ($V_{OC}$) of 0.19 V, a short-circuit current ($J_{SC}$) of $0.30\;mA{\cdot}cm^{-2}$, a fill factor (FF) of 37%, and a conversion efficiency (PCE) of 0.02%.

Characterization of Fe-ACF/$TiO_2$ composite Photocatalysts Effect Via Degradation of MB Solution (Fe-ACF/$TiO_2$ 복합체의 특성과 MB용액의 분해에서 포토-펜톤 효과)

  • Zhang, Kan;Meng, Ze-Da;Ko, Weon-Bae;Oh, Won-Chun
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.290-298
    • /
    • 2009
  • In this paper, the Fe-activated carbon fiber (ACF)/$TiO_2$ composite catalysts were prepared by a sol-gel method. The synthesized photocatalysts were used for the photo degradation of Methylene blue solution under UV light. From Brunauer-Emmett-Teller measurements (BET) data, it was shown the blocking of the micropores on the surface of ACF by treatment of Fe and Ti compound. As shown in SEM images, the ferric compounds and titanium dioxides were fixed onto the ACF surfaces. The result of X-ray powder diffraction showed that the crystal phase contained a mixing anatase and rutile structure and the 'FeO+$TiO_2$' from the composites. The EDX spectra for the elemental analysis showed the presence of C, O, and Ti with Fe peaks. Degradation activity of MB could be attributed to +OH radicals derived from electron/hole pair's reactions due to photolysis of $TiO_2$ and photo-Fenton effect of Fe.

Photocatalytic Degradation of Trichloroethylene over Titanium Dioxides (이산화티탄에 의한 삼염화에틸렌의 광촉매 분해반응)

  • Lee, Yong-Doo;Ahn, Byung-Hyun;Lim, Kwon-Taek;Jung, Yeon-Tae;Lee, Gun-Dae;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1035-1040
    • /
    • 1999
  • Photocatalytic degradation of trichloroethylene has been carried out with UV-illuminated $TiO_2$-coated pyrex reactor in gas phase. Three commercial $TiO_2$ oxides were used as catalysts. The effect of reaction conditions, initial concentration of trichloroethylene, concentration of oxidant and light intensity on the photocatalytic activity were examined. Anatase-type catalyst showed higher activity than rutile-type, but P-25 catalyst showed the highest activity. The degradation rate increased with the decrease of flow rate and initial trichloroethylene concentration. It was preferable to use air as an oxidant. In addition, reactants with the water vapor decreased the activity and the degradation rate increased with the increase of light intensity, but it was very low with solar light. Photocatalytic deactivation was not observed at low concentration of trichloroethylene.

  • PDF

Synthesis of Titanium Dioxides from Peroxotitanate Solution Using Hydrothermal Method and Their Photocatalytic Decomposition of Methylene Blue (수열합성법에 의한 과산화티탄 수용액으로부터 이산화티탄의 합성 및 메틸렌블루의 광분해반응)

  • Jung, Won Young;Lee, Seung Ho;Kim, Dae Sung;Lee, Gun Dae;Park, Seong Soo;Hong, Seong-Soo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.417-422
    • /
    • 2010
  • Nanosized $TiO_2$ particles were prepared by hydrothermal method from the aqueous peroxotitanate solution using the different carboxylic acids as an additives. The physical properties of prepared nanosized $TiO_2$ particles were investigated and we also examined the activity of $TiO_2$ particles as a photocatalyst on the decomposition of methylene blue. The major phase of all the prepared $TiO_2$ particles was an anatase structure regardless of carboxylic acids and a rutile peak was observed above $700^{\circ}C$. The photocatalytic activity increased with an increase of hydrocarbon number of carboxylic compounds and the highest activity was shown on the catalysts which was prepared using succinic acid as an additive and calcined at $500^{\circ}C$.

Fabrication and Characterization of Dye-Sensitized Solar Cells Based on Rhodamine Dyes (로다민 기반 염료감응형 태양전지의 제조 및 특성 분석)

  • Choi, Kang-Hoon;Jung, Hye-In;An, Byeong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.731-736
    • /
    • 2015
  • Rhodamine B (RhB) was utilized as a dye sensitizer for dye-sensitized solar cells (DSSCs) and its photovoltaic property was examined under the illumination of AM 1.5 G, $100mWcm^{-2}$. DSSCs based on RhB exhibited typical photovoltaic properties with an open-circuit voltage ($V_{OC}$) of 0.34 V, a short-circuit current ($J_{SC}$) of $1.55mA{\cdot}cm^{-2}$, a fill factor (FF) of 50%, and a conversion efficiency (PCE) of 0.26%. In order to further improve the photovoltaic properties of RhB-based DSSCs, the effect of (i) incorporating a strong electron-donating NCS unit into the RhB molecular backbone, (ii) combining a bis-negatively charged zinc complex anion ($Zn-dmit_2$, dmit=di-mercapto-dithiol-thione) with the amine cation of RhB, (iii) co-adsorbing RhB dyes with chenodeoxycholic acid (CDCA) molecules onto porous $TiO_2$ electrodes, was investigated and discussed.