• Title/Summary/Keyword: Titanium alloy

Search Result 529, Processing Time 0.025 seconds

Effect of Processing Conditions on the Deep Drawability of Ti-6Al-4V Sheet at Warm Temperatures (Ti-6Al-4V판재의 온간 딥드로잉 성형성에 미치는 공정변수의 영향)

  • Shin, G.S.;Park, J.G.;Kim, J.H.;Kim, Y.S.;Park, Y.H.;Park, N.K.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.5-12
    • /
    • 2015
  • In the current study, fundamental deep drawing characteristics of Ti-6Al-4V alloy sheets were investigated to establish the effect of processing conditions on large size square deep drawn cups. To accomplish this study, FE-simulations (Abaqus) were performed to determine optimum blank size, friction coefficient, the gap between punch and die, etc. The simulated processing parameters were verified experimentally. Based on the FE-simulation results, deep drawing was performed with various blank holding loads and sample sizes. In order to improve the formability of Ti-6Al-4V sheet, various lubricant methods were evaluated. Tensile tests and thickness measurements were conducted on the formed sheets. Processing parameters including blank holding force, lubricants, and optimum blank size, were selected to achieve improved drawing quality. With the optimum processing condition, a $200mm{\times}200mm$ cup was deep drawn successfully.

Prediction of Serrated Chip Formation in High Speed Metal Cutting (고속 절삭공정 중 톱니형 칩 생성 예측)

  • 임성한;오수익
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.358-363
    • /
    • 2003
  • Adiabatic shear bands have been observed in the serrated chip during high strain rate metal cutting process of medium carbon steel and titanium alloy The recent microscopic observations have shown that dynamic recrystallization occurs in the narrow adiabatic shear bands. However the conventional flow stress models such as the Zerilli-Armstrong model and the Johnson-Cook model, in general, do not predict the occurrence of dynamic recrystallization (DRX) in the shear bands and the thermal softening effects accompanied by DRX. In the present study, a strain hardening and thermal softening model is proposed to predict the adiabatic shear localized chip formation. The finite element analysis (FEA) with this proposed flow stress model shows that the temperature of the shear band during cutting process rises above 0.5Τ$_{m}$. The simulation shows that temperature rises to initiate dynamic recrystallization, dynamic recrystallization lowers the flow stress, and that adiabatic shear localized band and the serrated chip are formed. FEA is also used to predict and compare chip formations of two flow stress models in orthogonal metal cutting with AISI 1045. The predictions of the FEA agreed well with the experimental measurements.s.

Characteristics of Transient Performance in a Turbocharged GDI Engine with TiAl Turbine (TiAl 터빈을 적용한 과급 직분식 전기점화 엔진의 과도운전 성능특성)

  • Park, Chansoo;Jung, Jinyoung;Bae, Choongsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.299-306
    • /
    • 2015
  • Turbocharged gasoline direct injection engine is one of promising technologies in the automotive industry. However, reduction in turbo-lag under transient operation is one of important challenging points to improve drivability. Engine transient performance was investigated in a 4-cylinder 2.0 L turbo-gasoline direct injection (T-GDI) engine using Inconel and TiAl (Titanium Aluminide alloy) turbine wheel turbochargers. The TiAl turbocharger performed superior transient boost pressure and torque rises under various engine transient operation conditions. These were mainly due to lower turbine rotational inertia of TiAl turbocharger. The Maximum boost pressure and torque build up were founded in 1500 rpm and 2000 rpm, instant load change from 20% to 100% of pedal position.

Analysis of Loosening Phenomenon in Artificial Hip Joint Application Related to Design Parameters (인공고관절의 설계인자들이 해리현상에 미치는 영향에 대한 해석)

  • Kim, Young-Eun;Chung, Chung-Hwa
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.155-162
    • /
    • 1993
  • The human's biomechanical structure keeps an optimal state by adapting the original biomechanical structure according to a change in the physical environment. This phenomenon is believed to be the main cause of loosening of the total hip replacement which is used widely in these days. In this study the bone density change due to artificial hip joint, which is generally believed as bone-remodeling, was investigated by the finite element method. For this, 2-D FEM models with 4 nodal point elements were constructed for intact and implanted cases. The density was calculated by comparing the relative amounts of effective stress for these two cases. In this way, calculated new density values were used in the next step as input values and this procedure repeated until convergence was obtained. Severe density change was detected at the femoral cortex of the proximal-medial side as expected. Moreover, following surprising result was found from this analysis. Titanium alloy prosthesis showed less density change compared to stainless steel prosthesis at earlier stage, however, almost same amount of the density change was detected at final stage. It was also found that other design parameters could not significantly affect its density change.

  • PDF

Study on the Improvement of wear properties of Automobile elements in Titanium alloy Coated (티타늄합금 코팅된 자동차 부품의 마모특성 향상에 관한 연구)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.5
    • /
    • pp.574-580
    • /
    • 2013
  • In this paper, The process of thin-film coating technology was applied to improve adhesion of the hardness thin film and nitride layer. This thin-film coating technology have formed composite thin-film to gain hardness and toughness used in press mold. The thin-film coating manufacturing technology increased vacuum present in the vacuum chamber and improved the throw ratio of the gun power using physical vapor deposition coating technology. Ti alloys target improved performance and surface material through the development of a composite film coating technology for various precision machining parts.

A Study on the Minimization of Dent Marks due to Mold Tooth Teeth Generated During Wave Forming of Stainless Steel Wire (STS 316Ti) (스테인리스 스틸 강선(STS 316Ti)의 웨이브 성형 시 발생되는 금형 치절에 의한 찍임 자국 최소화에 관한 연구)

  • Moon, Hyunchol;Bae, Soohan;Sung, Hyokyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.98-106
    • /
    • 2022
  • Among the parts assembled in the gas receiver of a marine engine, the titanium alloy stainless steel (STS 316Ti) wire mesh serving as a filter was broken, and the related part, the turbine fan of the turbocharger, was damaged. In this study, a sample of the grid wire mesh was collected and the cause of breakage was analyzed, and a method of minimizing the dent mark caused by the mold during wire forming, which is one of the most direct causes, was studied. In addition, the optimum mold shape was realized through FEM simulation, and the wire wave molding machine capable of controlling the speed was improved by supplementing the problems of the existing wire wave molding machine, thereby improving durability with minimal dent marks.

A study of apatite formation on NaOH treated Ti alloys with different Iron content (NaOH 처리한 Fe 첨가된 Ti alloys의 아파타이트 형성관찰)

  • Seung-Woo Lee;Yun-Jong Kim;Jae-Gyeoung Ruy;Taik-Nam Kim
    • The Journal of Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.23-32
    • /
    • 2004
  • Metals, ceramics and polymers are widely used as bioimplant materials. However, Ti and Ti alloys are widely used because of its high strength to weight ratio and good biocompatibility when implanted in the body. In this experiment, Ti alloys of Grade-4 (gr4), 0.2 wt % Fe, 0.5 wt % Fe and 2 wt % Fe were studied for their surface morphology and HAp forming ability on the metal substrate for different treatments. Intially, the samples were mechanically polished on silicone carbide paper (No.-2000). The polished samples were treated with 5M NaOH solution at $60^{\circ}C$ for 24 hours. The NaOH treated samples were washed gently with distill water and dried at $40^{\circ}C$ for 1 day. The dried samples were heated in air at $600^{\circ}C$ for 1 hour. The surface morphology of these samples were studied using SEM. The SEM studies showed network of pores in all samples. These samples were immersed in stimulated body fluids (SBF) kept at $36.5^{\circ}C$ for different periods over the length of 1 to 14 days. The apatite formation was confirmed on all Ti-alloys using EDAX.

  • PDF

Preparation and oxygen control of Ti-6Al-4V alloys by recycling dental pure Ti scraps (치과용(齒科用) 순(純) 타이타늄 스크랩을 재활용(再活用)한 Ti-6Al-4V 합금(合金)의 제조(製造) 및 산소(酸素) 제어(制御))

  • Oh, Jung-Min;Lee, Back-Kyu;Choi, Good-Sun;Lim, Jae-Won
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.60-65
    • /
    • 2012
  • The Ti-6Al-4V alloys were prepared by recycling of dental Ti pure scraps using vacuum arc melting process, and their physical properties were evaluated the Ti-6Al-4V alloys with different oxygen concentrations. For the preparation of Ti-6Al-4V alloys, Ti pure scraps used for dental implant were utilized as a raw material, and their different oxygen concentrations were ranged from G1 to G4 grade in ASTM standards. It was confirmed that the weight loss of Al in the composition of Ti-6Al-4V alloy could be controlled under the Ar pressure of 875 torr during the melting of alloy. The oxygen concentrations of the Ti-6Al-4V alloys were ranged from 1170 to 3340 ppm. The vickers hardness change of the Ti-6Al-4V alloys showed a similar behavior with that of pure Ti. As a result, we confirmed a possibility of preparation of Ti-6Al-4V alloy by recycling of dental Ti scraps using vacuum arc melting process in this study.

Three point bending test of recycled Nickel-Titanium alloy wires (재생한 니켈 티타늄 호선의 3점 굴곡물성실험)

  • Lee, Sung-Ho;Chang, Young Il
    • The korean journal of orthodontics
    • /
    • v.30 no.6 s.83
    • /
    • pp.731-738
    • /
    • 2000
  • The purpose of this study was to investigate the change of 3 point bending properties of various nickel titanium wires after recycling. Four Types of nickel-titanium (Align: martensitic type, NiTi, Optimalloy, Sentalloy: austenitic type) wires were divided to three groups: as-received condition (T0: control group), treated in artificial saliva for four weeks (T1) and autoclaved after being treated in artificial saliva (T2). Detrimental changes were observed for the selected mechanical properties in three point bending test. Loading force at 3mm deflection, unloading force at 3mm deflection, stress hysteresis, loading force at 1mm deflection, unloading force at 1mm deflection and stress hysteresis at 1mm deflection were calculated. The findings suggest that : 1. Align demonstrated statistically significant increase In loading force (p<0.05) and unloading force (p<0.01) at 3mm deflection after recycling(T2), but NiTi, Optimalloy and Sentalloy showed no statistically difference after recycling. 2. Align demonstrated statistically significant decrease in hysteresis(p<0.01) after recycling(T2) but NiTi, Optimalloy and Sentalloy showed no statistically significant difference after recycling. 3. All wires showed no statistically significant difference in loading force at 1mm deflection after recycling(T2). 4. Align demonstrated statistically significant decrease in unloading force in 1mm deflection (p<0.05) after recycling(T2) but NiTi, Optimalloy and Sentalloy showed no statistically difference after recycling 5. Loading force and unloading force of T1 showed no significant change compared with those of T0, but loading force and unloading force of T2 showed significant changes compared with those of T0(p<0.05, p<0.01 respectively). 6. Align demonstrated a tendency to lose some of this pseudoelasticity in T1 and pseudoplasticity and pseudoelasticity in T2.

  • PDF

Conservation Treatment and Study on Manufacturing Techniques of Jija Chongtong Gun in the Middle of Joseon Dynasty (조선 중기 제작된 지자총통의 보존처리와 제작기법 연구 -동아대학교 석당박물관 소장 보물 지자총통을 중심으로-)

  • Nam Dohyeon;Park Younghwan;Lee Jaesung
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.23-46
    • /
    • 2023
  • The Jija Chongtong Gun, owned by Seokdang Museum of Dong-A University, is a tubedstyle heavy weapon of the battlefield in the mid-Joseon Dynasty and is the second largest firearm after Cheonja Chongtong. The original surface color of the Jija Chongtong Gun was obscured by foreign substances and therefore it was judged that its condition requires the conservation treatment. For stable conservation treatment, gamma ray and X-ray non-destructive transmission surveys was conducted to determine the internal structure and conservation condition. And the component analysis on the material components and surface contaminants of Jija Chongtong Gun was conducted by utilizing the p-XRF component analysis, SEM-EDS component analysis, and XRD analysis. As a result of the gamma-ray and X-ray non-destructive transmission investigation, a large amount of air bubbles was observed inside Jija Chongtong Gun, and the part that appeared to be a chaplet by visual observation was not identified. As a result of gamma-ray and p-XRF component analysis, it was confirmed that Jija Chongtong Gun was bronze made of copper (Cu), tin (Sn), and lead (Pb) alloy. As a result of surface analysis of foreign substances using SEM-EDS, it was confirmed that the main components of white foreign substances were calcium (Ca), sulfur (S), and titanium (Ti). Titanium was presumed to be titanium dioxide (TiO2), the main component of white correction fluid. The red foreign substance was confirmed to contain barium (Ba) as its main ingredient, and was presumed to be barium sulfate (BaSO4), an extender pigment in paint. White and red contaminants, mainly composed of titanium and barium, are presumed to have been deposited on the surface in recent years. The yellow foreign substances were confirmed to be aluminum (Al) and silicon (Si), and were presumed to have originated from soil components. As a result of SEM-EDS and XRD component analysis, the white foreign substance was confirmed to be gypsum (CaS). Based on the results of component analysis, surface impurities were removed, stabilization treatment, and strengthening treatment were performed. During the conservation process, unknown inscriptions Woo (右), Byeong (兵), Sang (上), and Yi (二) were discovered through a portable microscope and precise 3D scanning. In addition, the carving method, depth, and width of the inscription were measured. Woo Byeong Sang is located above Happo Fortress in Changwon, and Yi can be identified as the second hill.