• Title/Summary/Keyword: Titanium alloy

Search Result 530, Processing Time 0.035 seconds

Prediction and Comparison of Electrochemical Machining on Shape Memory Alloy(SMA) using Deep Neural Network(DNN)

  • Song, Woo Jae;Choi, Seung Geon;Lee, Eun-Sang
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.276-283
    • /
    • 2019
  • Nitinol is an alloy of nickel and titanium. Nitinol is one of the shape memory alloys(SMA) that are restored to a remembered form, changing the crystal structure at a given temperature. Because of these unique features, it is used in medical devices, high precision sensors, and aerospace industries. However, the conventional method of mechanical machining for nitinol has problems of thermal and residual stress after processing. Therefore, the electrochemical machining(ECM), which does not produce residual stress and thermal deformation, has emerged as an alternative processing technique. In addition, to replace the existing experimental planning methods, this study used deep neural network(DNN), which is the basis for AI. This method was shown to be more useful than conventional method of design of experiments(RSM, Taguchi, Regression) by applying deep neural network(DNN) to electrochemical machining(ECM) and comparing root mean square errors(RMSE). Comparison with actual experimental values has shown that DNN is a more useful method than conventional method. (DOE - RSM, Taguchi, Regression). The result of the machining was accurately and efficiently predicted by applying electrochemical machining(ECM) and deep neural network(DNN) to the shape memory alloy(SMA), which is a hard-mechinability material.

Experimental training of shape memory alloy fibres under combined thermomechanical loading

  • Shinde, Digamber;Katariya, Pankaj V;Mehar, Kulmani;Khan, Md. Rajik;Panda, Subrata K;Pandey, Harsh K
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.519-526
    • /
    • 2018
  • In this article, experimental training of the commercial available shape memory alloy fibre (SMA) fibre under the combined thermomechanical loading is reported. SMA has the ability to sense a small change in temperature (${\geq}10^{\circ}C$) and activated under the external loading and results in shape change. The thermomechanical characteristics of SMA at different temperature and mechanical loading are obtained through an own lab-scale experimental setup. The analysis is conducted for two types of the medium using the liquid nitrogen (cold cycle) and the hot water (heat cycle). The experimental data indicate that SMA act as a normal wire for Martensite phase and activated behavior i.e., regain the original shape during the Austenite phase only. To improve the confidence of such kind of behavior has been verified by inspecting the composition of the wire. The study reveals interesting conclusion i.e., while SMA deviates from the equiatomic structure or consist of foreign materials (carbon and oxygen) except nickel and titanium may affect the phase transformation temperature which shifted the activation phase temperature. Also, the grain structure distortion of SMA wire has been examined via the scanning electron microscope after the thermomechanical cycle loading and discussed in details.

Effects of Grinding and Masking Conditions on the Potentiodynamic Polarization Curves of Additively Manufactured Ti-6Al-4V Alloy in Artificial Saliva Solution with or Without Fluoride Ions (불소 첨가/미첨가 인공타액 용액에서 연마 및 마스킹 조건이 적층제조 Ti-6Al-4V 합금의 동전위분극시험 결과에 미치는 영향)

  • Ahn, KyungBin;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.475-483
    • /
    • 2021
  • Additively manufactured titanium alloy is one of the promising materials in advanced medical industries. However, these additively manufactured alloys show corrosion properties different from those of conventional materials due to their unique microstructure. In this study, the effect of surface roughness and masking conditions on the results of the potentiodynamic polarization tests on additively manufactured or conventional Ti-6Al-4V alloys in artificial saliva solution with or without fluoride was investigated. The results showed that the corrosion potential was slightly lower with a flat cell with an O-ring than with masking tape. The corrosion rate was decreased with decreases in the surface roughness. Localized corrosion involving delamination of the surface layer occurred at 7 ~ 9 V (SSC) on the additively manufactured alloy in solution with or without fluoride when the samples were finished with 1000-grit SiC paper, whereas localized corrosion was not observed in the specimens finished with 1-㎛ alumina paste.

A Study on the Analysis of Surface Characteristics According to intermittent Ratio of Discontinuous Grinding Wheel with Multi-Porous Grooves (다기공 연삭숫돌의 단속비에 의한 표면특성 분석에 관한 연구)

  • Kim, Jeong-Du;Kang, Youn-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.44-51
    • /
    • 1997
  • Crinding of stainless steel, aluminium alloy, copper alloy, and titanium alloy are difficult to obtain high quality finish, because they have the mechanical properties such as low hardness, high toughness. The low hardness and the high toughness result in the loading of wheel and the poor surface finish. In order to perform the grinding operations for these sorts of materials easily, the discontinuous grinding wheel wiht multi-porous grooves has been newly developed. The multi-porous grooves inthe discontinuous grinding wheel were formed during grinding wheel manufacturing process. In this paper, discontinuous grinding wheels having intermittent ratio 0.66, 0.81 and number of grooves 18,32 have been manufactured and grinding surface characteristics of these grinding wheels for SUS304 have been analyzed. Discontinuous grinding temperature according to intermittent ratiohas been also estimated by simulation. The discontinuous grinding wheels increase the grinding performance considerably. It is desirable to use the discontinuous grinding wheel in grinding the materials with high efficiency and accuracy.

  • PDF

MECHANICAL PROPERTIES AND CORROSION BEHAVIORS OF AGED Ti-4Mo-4Cr-X (X = Sn, V, Zr) ALLOYS FOR METALLIC BIOMATERIALS

  • KWANGMIN LEE;GUNHEE LEE
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1297-1301
    • /
    • 2020
  • The purpose of this study was to investigate the mechanical properties of beta type aged Ti-4Mo-4Cr-X (X = V, Sn, Zr) quaternary alloy for use as a cardiovascular stent. Titanium (Ti) alloys were fabricated using a vacuum arc remelting furnace process. To homogenize the specimens of each composition and remove the micro segregation, all cast specimens were subjected to homogenization at 850℃ for 4 h, which was 100℃ higher than the β-transus temperature of 750℃. The tensile strength and elongation of the aged Ti-4Mo-4Cr-X (X = V, Sn, Zr) alloys were increased as compared to the homogenized alloys. In addition, many α/β interface boundaries formed after aging treatment at 450℃, which acted as inhibitors of strain and caused an increase in tensile strength. The elongation of Ti-4Mo-4Cr-X alloys consisting of α + β phases after aging treatment was improved by greater than 30%. Results of a potentiodynamic polarization test showed that the lowest current density of Ti-4Mo-4Cr-4Sn with 1.05 × 10-8 A/cm2 was obtained. The present Ti-4Mo-4Cr-X alloys showed better corrosion characteristics as compared to the 316L stainless steel and L605 (Co-Cr alloy) cardiovascular stent alloys.

Aging Behavior and Effect of Heat Treatment on High Temperature Mechanical Properties in Ti-15V-3AI-3Cr-3Sn (Ti-15V-3Al합금의 시효거동과 열처리에 따른 고온 기계적 특성)

  • Lee Jae Won;Lee Back-Hee;Lee Kyu Hwan;Kim Young Do
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • Titanium alloys are the one of promising candidate materials for medium high temperature parts in the aircraft, automobile, petrochemistry and electrochemistry because of their high strength with low density in medium high temperature. In this study, the effects of aging and heat treatments on the mechanical properties of Ti-15-3 alloy in medium high temperature, which was $400^{\circ}C$, were studied. Solid solution treatment was performed at $8000^{\circ}C$ of $\beta$ phase region for 1 h and the alloy was quenched in water. The alloy was aged at $5000^{\circ}C$ of $\alpha$ and $\beta$ two-phase region for 1, 2, 4, 8, ... and 100 h to increase the mechanical property. The $\beta$ single phase was observed at all parts of specimens in Ti-15-3 alloy after ST. As the aging at $500^{\circ}C$, fine precipitates of a phase was generated from matrix of $\beta$ phase and the microstructure was consisted of weaving structure such as Widmanstiitten a phase. The most suitable aging time is 24h in$ 400^{\circ}C$. At this time, strength is 1164 MPa and elongation is about 12%. In room temperature, elongation of Ti-15-3 alloy aged at $500^{\circ}C$ for 16 h is poor (=3%) in spite of high tensile strength (1458 MPa).

Hot Deformation Behavior and Microstructural Evolution of Powder Metallurgy Ti-6Al-4V Alloy (티타늄 합금 분말 소결체의 고온 변형 거동 및 미세조직 연구)

  • Kim, Youngmoo;Song, Young-Beom;Lee, Sung Ho;Kwon, Young-Sam
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.277-285
    • /
    • 2014
  • The effects of processing parameters on the flow behavior and microstructures were investigated in hot compression of powder metallurgy (P/M) Ti-6Al-4V alloy. The alloy was fabricated by a blended elemental (B/E) approach and it exhibited lamellar ${\alpha}+{\beta}$ microstructure. The hot compression tests were performed in the range of temperature $800-1000^{\circ}C$ with $50^{\circ}C$ intervals, strain rate $10^{-4}-10s^{-1}$, and strain up to 0.5. At $800-950^{\circ}C$, continuous flow softening after a peak stress was observed with strain rates lower than $0.1s^{-1}$. At strain rates higher than $1s^{-1}$, rapid drop in flow stress with strain hardening or broad oscillations was recorded. The processing map of P/M Ti-6Al-4V was designed based on the compression test and revealed the peak efficiency at $850^{\circ}C$ and $0.001s^{-1}$. As the processing temperature increased, the volume fraction of ${\beta}$ phase was increased. In addition, below $950^{\circ}C$, the globularization of phase at the slower strain rate and kinking microstructures were found. Based on these data, the preferred working condition of the alloy may be in the range of $850-950^{\circ}C$ and strain rate of $0.001-0.01s^{-1}$.

Preparation of Low Oxygen Content Powder from Ti-6Al-4V and Ti-8Al-1Mo-1V Alloy Scraps with Deoxidation in Solid State Process (Ti-6Al-4V 및 Ti-8Al-1Mo-1V 합금 스크랩을 이용한 저산소 분말 제조와 탈산방법 비교)

  • Oh, Jung-Min;Suh, Chang-Youl;Kwon, Hanjung;Lim, Jae-Won;Roh, Ki-Min
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • The present study describes the process of producing low oxygen content alloy powder from Ti-6Al-4V and Ti-8Al-1Mo-1V (AMS 4972) alloy scraps using hydrogenation-dehydrogenation (HDH) and deoxidation in solid state (DOSS) processes. Each prepared powder was deoxidized with Ca contact and non-contact method to compare the deoxidation capability. It is known that the non-contact deoxidation method, using Ca vapor above the melting temperature $T_m$ of Ca, has greater deoxidation capability. However, Oxygen contents in Ti-6Al-4V and Ti-8Al-1Mo-1V powder after non-contact deoxidation method were higher than those after contact deoxidation method. Therefore, we investigate the effect of Al - the richest alloy element in theses Ti based metals - on the deoxidation processes.

Formation of Bioactive Surface by PEO-treatment after 2nd ATO Technique of Ti-6Al-4V Alloy (Ti-6Al-4V 합금에 2nd ATO 처리 후 플라즈마 전해 산화법에 의한 생체활성표면형성)

  • Lim, Sang-Gyu;Cho, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.74-74
    • /
    • 2018
  • Ti-6Al-4V alloys have been widely used as orthopedic materials because of their excellent corrosion resistance and mechanical properties. However, it does not bind directly to the bone, so it requires a surface modification. This problem can be solved by nanotube and micropore formation. Plasma electrolytic oxidation (PEO) treatment for micropore, which combines high-voltage spark and electrochemical oxidation, is a new way of forming a ceramic coating on light metals such as titanium and its alloys. This method has excellent reproducibility and can easily control the shape and size of the Ti alloy. In this study, formation of bioactive surface by PEO-treatment after $2^{nd}$ ATO technique of Ti-6Al-4V alloy was invesgated by various instrument. Nanotube oxide surface structure was formed on the surface by anodic oxidation treatment in 0.8 wt.% NaF and 1M $H_3PO_4$ electrolytes. After nanotube formation, nanotube layer was removed by ultrasonic cleaning. PEO-treatment was carried out at 280V for 3 minutes in the electrolytic solution containing the bioactive substance (Mg, Zn, Mn, Sr, and Si). The surface of Ti-6Al-4V alloy was observed by field emission scanning electron microscopy (FE-SEM, S-4800 Hitachi, Japan). An energy dispersive X-ray spectrometer (EDS, Inca program, Oxford, UK) was used to analyze the spectra of physiologically active Si, Mn, Mg, Zn, and Sr ions. The PEO film formed on the Ti-6Al-4V alloy surface was characterized using an X-ray diffractometer (TF-XRD, X'pert Philips, Netherlands). It is confirmed that bioactive ions play an essential role in the normal bone growth and metabolism of the human skeletal tissues.

  • PDF

Creep characteristic of Mg alloy at high temperature (고온에서 마그네슘 합금의 크리이프 특성)

  • An, Jung-O;Park, Kyong-Do;Kwak, Jae-Seob;Kang, Dae-Min
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.39-44
    • /
    • 2008
  • Magnesium alloys have given high attention to the industry of light-weigh as automobile and electronics with aluminium, titanium and composite alloys due to their high strength, low specific density and good damping characteristics. But the magnesium contained structures under high temperature have the problems related to creep deformation and rupture life, which is a reason of developing the new material against creep deformation to use them safely. The purpose of this study is to predict the creep deformation mechanism and rupture time of AZ31 magnesium alloy. For this, creep tests of AZ31 magnesium alloy were done under constant creep load and temperature with the equipment including automatic temperature controller with acquisition computer. The apparent activation energy Qc and the applied stress exponent n, rupture life have been determined during creep of AZ31 Mg alloy over the temperature range of $150^{\circ}C$ to $300^{\circ}C$. In order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller, whose data are sent to computer. At around the temperature of $150^{\circ}C{\sim}300^{\circ}C$ the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy for the creep deformation was nearly equal and a little low, respectively, to that of the self diffusion of Mg alloy.

  • PDF