• Title/Summary/Keyword: Titanium alloy

Search Result 517, Processing Time 0.024 seconds

The Biocompatibility Of Cultured Bone Marrow Cells And Gingival Fibroblasts On The Titanium Surfaces (티타늄 배양에 대한 배양골수와 치은 섬유아세포의 생체적합성)

  • Oh, Choong-Young;Park, Joon-Bong;Kwon, Young-Hyuk;Lee, Man-Sup
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.143-160
    • /
    • 1996
  • The purpose of this study was to evaluate the response in aspect of attachment and growth rate of osteoblasts and growth rate of osteoblasts and human gingival fibroblasts to the commercially pure titanium(CP titanium)and titanium alloy(Ti-6AI-4V) that are used widely as implant materials, and to obtain the basic information to ideal implant materials. In the studly, commercially pure titanium in first test group, titanium alloy(Ti-6AI-4V) in second test group, cobalt-chrome-molybdenum alloy(Co-Cr-Mo alloy) in positive control group, and tissue culture polystyrene plate in negative control group were used. The results of this study were as follows. 1. Bone marrow cells cultured on CP titanium and Ti-6Al-4V showed significantly greater attachment and growth rate(p(0.05) compared to Co-Cr-Mo alloy in each time. 2. There were no significant differences(p>0.05) in attachment and growth rate of bone marrow cells cultured on CP titanium and Ti-6AI-4V or tissue culture plate. 3. Most bone marrow cells cultured on CP titanium, Ti-6Al-4V and tissue culture plate were attached well to each substratum in first 2days, and then, grew at higher growth rate. On the other hand, some cells cultured on Co-Cr-Mo alloy failed to attach in first 2 days, and then, attached cells grew at lower growth rate than other groups. 4. Attachment and growth rates of gingival fibroblasts cultured on CP titanium and Ti-6Al-4V showed no significant differences(p>0.05) compared to Co-Cr-Mo alloy in 2 days, but significantly greater increase(p<0.05) in 5 and 9 days. 5. There were no significantly differences(p>0.05) between growth rates on gingival fibroblasts cultured on CP titanium, Ti-6Al-4V and tissue culture plate in 2 and 5days, but a significant lower growth rate(p<0.05) on CP titanium and Ti-6Al-4V versus tissue culture plate. 6. Some gingival fibroblasts cultured on all specimen groups failed to attach, but attached cells grew well, especially on CP titanium, Ti-GAl-4V and tissue culture plate. 7. There were no significant differences(P>0.05) between growth rates of both bone marrow cells and gingival fibroblasts cultured on CP titanium and Ti-6AI-4V. As a result of this study, both commercially pure titanium and Ti-6AI-4V showed excellent biocompatibility and there was no significant difference in the cellular response to the both metals. Bone marrow cells cultured on each substratum showed significantly greater growth rate and responded sensitively to cytotoxic effects of metal surfaces compared to gingival fibroblasts. Considering cell response to the substrate, it was likely that the composition itself of titanium metals have no significant effect on the biocompatibility. Further study need to be done to evaluate the influence of surface characteristics on cellular responses.

  • PDF

Manufacturing Technology of Titanium Alloy Bolts Using Warm Forging Process (온간 단조공정을 이용한 타이타늄합금 볼트 제조기술)

  • Lim, S.G.;Kim, J.H.;Kim, J.H.;Lee, C.H.;Bong, J.K.;Yeom, J.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.80-81
    • /
    • 2009
  • Ti-6Al-4V alloy has been widely used for aerospace and power generation applications because of low density and attractive mechanical and corrosion resistant properties. However, the titanium alloy bolt is generally manufactured by cutting and rolling because of their poor workability. In order to achieve the mass production of titanium alloy bolts, it needs to be solved some manufacturing problems such as the sticking between workpiece and dies, the formation of the forming defects during the forging and so on. In this study, the manufacturing technology of titanium alloy bolts using warm forging process was introduced. The aim of present work is to develop a warm forging technology for high strength Ti-6Al-4V bolts.

  • PDF

New Process for Ti Alloy Powder Production by Using Gas Atomization

  • Fujita, Makoto;Arimoto, Nobuhiro;Nishioka, Kazuo;Miura, Hideshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.12-13
    • /
    • 2006
  • The spherical and high quality Titanium fine powder "Tilop" has been produced with gas atomization furnace, Sumitomo Titanium Corporation originally designed. Recently, a new process which can produce Ti-alloy(Ti-6Al-4V) powders by utilizing our gas atomization process, of which raw material is sponge titanium pre-mixed with alloy chips or granules has been also developed. The particle size of gas atomized Ti-alloy powder and the mechanical properties of sintered Ti-alloy compacts prepared by metal injection molding were discussed in this study.

  • PDF

A Study on the Improvement of Physical Properties for Titanium Alloy by the Grinding Conditions (연삭가공조건에 따른 티타늄 합금의 물성치 향상에 관한 연구)

  • Kim, Won Il;Lee, Yun Kyung;Wang, Duck Hyun;Heo, Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.237-242
    • /
    • 2001
  • Ti-6Al-4V alloy can be obtained the stability of organization and product treasure, the evaluation of the cutting ability and the mechanical characteristics after the heat treatment of annealing, solution and aging. The difficulty in machining titanium alloy is how treat the heat generated during the process. Because the heat conductivity of titanium alloy is regardfully low, the heat generated during grinding is accumulated in workpiece. and it causes the increasing of grinding wheel grits' wear and makes the ground surface rough. So, these characteristics in grinding of titanium alloy will change the mechanical properties of the titanium alloy. From this study. the mechanical characteristics of annealed one and solution and aging one treated Ti-6Al-4V alloy after grinding was concerned with checking out the bending strength and hardness. For the result, both of bending strength and hardness were increased at the burned area on the surface. Roughness value was remarkably high at the table speed of 10m/min.

  • PDF

A study on Titanium Hydride Formation of Used Titanium Aircraft Scrap for Metal Foaming Agents

  • Hur, Bo-Yong;Ahn, Duck-Kyu;Kim, Sang-Youl;Jeon, Sung-Hwan;Park, Su-Han;Ahn, Hyo-Jun;Park, Chan-Ho;Yoon, Ik-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.209-212
    • /
    • 2001
  • Aircraft industry is developed very fast so titanium scrap was generated to manufacture. Titanium scrap was wasted and used to deoxidize cast iron so we are study recycling of it. In this research were studied that metal hydride of reacted in hydrogen chamber of AMS4900, 4901, return scrap titanium alloy and sponge titanium granule. The temperature of hydrogenation was 40$0^{\circ}C$ in the case of pure sponge titanium but return scrap titanium alloy were step reaction temperature at 40$0^{\circ}C$ and 50$0^{\circ}C$, and after the hydride of titanium alloy were crushed by ball mill for 5h. Titanium hydride contains to 4wt.% of hydrogen theoretically as theory. It was determined by heating and cooling curve in reaction chamber. The result of XRD was titanium hydride peak only that it was similar to pure titanium. Titanium hydride Powder particle size was about 45${\mu}{\textrm}{m}$, and recovery ratio was 95w% compared with scrap weight for a aluminum foam agent.

  • PDF

Evaluation of Osseointegration around Tibial Implants in Rats by Ibandronate-Treated Nanotubular Ti-32Nb-5Zr Alloy

  • Nepal, Manoj;Li, Liang;Bae, Tae Sung;Kim, Byung Il;Soh, Yunjo
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.563-569
    • /
    • 2014
  • Materials with differing surfaces have been developed for clinical implant therapy in dentistry and orthopedics. This study was designed to evaluate bone response to titanium alloy containing Ti-32Nb-5Zr with nanostructure, anodic oxidation, heat treatment, and ibandronate coating. Rats were randomly assigned to two groups for implantation of titanium alloy (untreated) as the control group and titanium alloy group coated with ibandronate as the experimental group. Then, the implants were inserted in both tibiae of the rats for four weeks. After implantation, bone implant interface, trabecular microstructure, mechanical fixation was evaluated by histology, micro-computed tomography (${\mu}CT$) and the push-out test, respectively. We found that the anodized, heat-treated and ibandronate-coated titanium alloy triggered pronounced bone implant integration and early bone formation. Ibandronate-coated implants showed elevated values for removal torque and a higher level of BV/TV, trabecular thickness and separation upon analysis with ${\mu}CT$ and mechanical testing. Similarly, higher bone contact and a larger percentage bone area were observed via histology compared to untreated alloy. Furthermore, well coating of ibandronate with alloy was observed by vitro releasing experiment. Our study provided evidences that the coating of bisphosphonate onto the anodized and heat-treated nanostructure of titanium alloy had a positive effect on implant fixation.

Wetting properties between silver-copper-titanium braze alloy and hexagonal boron nitride

  • Sechi, Yoshihisa;Matsumoto, Taihei;Nakata, Kazuhiro
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.205-209
    • /
    • 2009
  • Wetting properties between silver-copper-titanium braze alloys with different titanium contents up to 2.8 mass% and hexagonal boron nitride ceramics were investigated using sessile drop method at 1123K in Argon. The final contact angle is less than $30^{\circ}$ when the Ti content was over 0.41 mass%. Meanwhile, the contact angle curves show different behavior. In case of using braze alloy containing 2.8 mass% of titanium, the initial contact angle is acute angle just after the melting of braze. In case of brazes containing titanium less than 2.26 mass%, the contact angle is larger than $90^{\circ}$ at the beginning and slowly decreases to acute angle. The reaction layer of titanium nitride is observed at the interface. In addition, the reaction of Ti in the braze and N in the bulk h-BN seemed to show diffusion limited spreading.

  • PDF

A Study on the Grinding of Titanium Alloy Part 1 : Grinding force, Specific grinding energy, Surface roughness, G-ratio (티타늄 합금의 연삭에 관한 연구 Part 1: 연삭력, 비연삭에저니, 표면거칠기 , 연삭비)

  • Kim, S. H.;Lim, J. G.;Ha, S. B.;Choi, H.;lee, J. C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.870-874
    • /
    • 2000
  • This investigation reports the grinding characteristics of titanium alloy(Ti-6Al-4V). Grinding experiments were performed at various grinding conditions and the grinding forces and specific grinding energies were measured to investigate the grindability of titanium alloy with the three different wheels including Diamond, Green carbide and Alumina. To investigate the grinding characteristics of titanium alloy grinding force, force-ratio, specific grinding energy and grinding -ratio, were measured. Surface roughness was also measured with tracer and the ground surfaces were observed with SEM. Force-ratio of grinding of titanium alloy was very lower than that of grinding of SKD-11. Specific grinding energy are almost five times larger and rougher surface was obtained in titanium grinding.

  • PDF

A Study on The Φ 9mm Titanium Alloy Wire (9mm 합금타이타늄 중간 선재 연구)

  • Kim, Sang-Yeoun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.8-13
    • /
    • 2012
  • Ti-3Al-2.5V ingot was produced, processed into a titanium alloy wire of 9mm diameter, and the characteristics were studied in comparison with imported material. The ingot satisfied ASTM Grade 9 standard showing oxygen content of 0.11wt% and iron content of 0.085wt%. The hardness of the 9mm diameter titanium alloy was similar to that of the imported material showing values between 225 and 250Hv, and the tensile strength of the imported material was 804MPa while that of the domestic development was 734MPa. The elongation of the imported material was 12% while that of the domestic development was 22%. A new process of manufacturing 9.0mm diameter titanium alloy wire through forging and multi-step hot rolling process out of 400mm diameter ingot was developed.

Characteristics of Cut Surface by Abrasive Waterjet Cutting of Titanium Alloy (티타늄 합금의 연마제 워터 제트 절단에 의한 절단표면 특성)

  • Chung Nam-Yong;Jin Yun-Ho
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.86-93
    • /
    • 2005
  • Abrasive waterjet (AWJ) can provide a more effective means for precision of difficult -to-machining materials such as ceramics and titanium alloys. The present study is focused on the surface roughness of abrasive waterjet cut surfaces. This paper investigated theoretical and experimental surface characteristics associated with abrasive waterjet cutting of titanium alloy Gr2. It is shown that the proper variations of several cutting parameters such as waterjet cutting pressure, cutting speed and cutting depth improve the roughness and characteristics on specimen surfaces produced by AWJ cutting. From the experimental results by AWJ cutting of titanium alloy Gr2, the optimal cutting conditions to improve the surface roughness and precision were proposed and discussed.