DOI QR코드

DOI QR Code

Evaluation of Osseointegration around Tibial Implants in Rats by Ibandronate-Treated Nanotubular Ti-32Nb-5Zr Alloy

  • Nepal, Manoj (Department of Dental Pharmacology, School of Dentistry, and Institute of Oral Bioscience) ;
  • Li, Liang (Department of Dental Pharmacology, School of Dentistry, and Institute of Oral Bioscience) ;
  • Bae, Tae Sung (Department of Dental Biomaterials, School of Dentistry, Chonbuk National University) ;
  • Kim, Byung Il (Department of Future Plan and New Material Engineering, Sunchon National University) ;
  • Soh, Yunjo (Department of Dental Pharmacology, School of Dentistry, and Institute of Oral Bioscience)
  • Received : 2014.10.01
  • Accepted : 2014.10.30
  • Published : 2014.11.30

Abstract

Materials with differing surfaces have been developed for clinical implant therapy in dentistry and orthopedics. This study was designed to evaluate bone response to titanium alloy containing Ti-32Nb-5Zr with nanostructure, anodic oxidation, heat treatment, and ibandronate coating. Rats were randomly assigned to two groups for implantation of titanium alloy (untreated) as the control group and titanium alloy group coated with ibandronate as the experimental group. Then, the implants were inserted in both tibiae of the rats for four weeks. After implantation, bone implant interface, trabecular microstructure, mechanical fixation was evaluated by histology, micro-computed tomography (${\mu}CT$) and the push-out test, respectively. We found that the anodized, heat-treated and ibandronate-coated titanium alloy triggered pronounced bone implant integration and early bone formation. Ibandronate-coated implants showed elevated values for removal torque and a higher level of BV/TV, trabecular thickness and separation upon analysis with ${\mu}CT$ and mechanical testing. Similarly, higher bone contact and a larger percentage bone area were observed via histology compared to untreated alloy. Furthermore, well coating of ibandronate with alloy was observed by vitro releasing experiment. Our study provided evidences that the coating of bisphosphonate onto the anodized and heat-treated nanostructure of titanium alloy had a positive effect on implant fixation.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation (KOSEF)

References

  1. Akesson, K. (2003) New approaches to pharmacological treatment of osteoporosis. Bull. World Health Organ. 81, 657-664.
  2. Bae, I. H.,Yun, K. D., Kim, H. S., Jeong, B. C., Lim, H. P., Park, S. W., Lee, K. M., Lim, Y. C., Lee, K. K., Yang, Y. and Koh, J. T. (2010) Anodic oxidized nanotubular titanium implants enhance bone morphogenic protein-2 delivery. J. Biomed. Mater Res. B Appl. Biomater. 93, 484-491.
  3. Balasundaram, G., Yao, C. and Webster, T. J. (2008) $TiO_2$ nanotubes functionalized with regions of bone morphogenetic protein-2 increase osteoblast adhesion. J. Biomed. Mater. Res. A 84, 447-453.
  4. Bhandari, M., Bajammal, S., Guyatt, G. H, Griffith, L., Busse, J. W., Schunemann, H. and Einhorn, T. A. (2005) Effect of bisphosphonates on periprosthetic bone mineral density after total joint arthroplasty. A. meta-analysis. J. Bone Joint Surg. Am. 87, 293-301. https://doi.org/10.2106/JBJS.D.01772
  5. Brammer, K. S., Oh, S., Cobb, C. J., Bjursten, L. M., van der Heyde, H. and Jin, S. (2009) Improved bone forming functuality on diametercontrolled $TiO_2$ nanotube furface. Acta Biometer. 5, 3215-3223. https://doi.org/10.1016/j.actbio.2009.05.008
  6. Carano, A., Teitlebaum, S. L., Konsek, J. K., Schlesinger, P. H. and Blair, H. C. (1990) Bisphosphonates directly inhibit the resorption activity of isolated avian osteoclasts in vitro. J. Clin. Invest. 85, 456-461. https://doi.org/10.1172/JCI114459
  7. Cohen D. P. (2003) Anti-osteoporotic medications: traditional and nontraditional. Clin. Obstet.Gynecol. 46, 341-348. https://doi.org/10.1097/00003081-200306000-00012
  8. Fleisch, H. (1998) Bisphosphonates: mechanisms of action. Endocr. Rev. 19, 80-100. https://doi.org/10.1210/edrv.19.1.0325
  9. Garcia-Moreno, C., Serrano, S., Nacher, M., Farre, M., Diez, A., Marinoso, M. L., Carbonell, J., Mellibovsky, L., Nogues, X., Ballester, J. and Aubia, J. (1998) Effect of alendronate on cultured normal human osteoblasts. Bone 22, 233-239. https://doi.org/10.1016/S8756-3282(97)00270-6
  10. Giavaresi, G., Giardino, R., Ambrosio, L., Battiston, G., Gerbasi, R., Fini, M, Rimondini, L. and Torricelli, P. (2003) In vitro biocompatibility of titanium oxide for prosthetic devices nanostructured by low pressure metal-organic chemical vapor deposition. Int. J. Artif. Organs 26, 774-780. https://doi.org/10.1177/039139880302600811
  11. Hilding, M. and Aspenberg, P. (2006) Postoperative clodronate decreases prosthetic migration: 4-year follow-up of a randomized radiostereometric study of 50 total knee patients. Acta Orthop. 77, 912-916. https://doi.org/10.1080/17453670610013213
  12. Hughes, D. E., MacDonald, B. R., Russell, R. G. and Gowen, M. (1989) Inhibition of osteoclast-like cell formation by bisphosphonates in longterm cultures of human bone marrow. J. Clin. Invest. 83, 1930-1935. https://doi.org/10.1172/JCI114100
  13. Jakobsen, T., Kold, S., Bechtold, J. E., Elmengaard, B. and Soballe, K. (2007) Local alendronate increases fixation of implants inserted with bone compaction: 12-week canine study. J. Orthop. Res. 25, 432-441. https://doi.org/10.1002/jor.20276
  14. Jensen, T. B., Bechtold, J. E., Chen, X. and Soballe, K. (2007) Systemic alendronate treatment improves fixation of press-fit implants: a canine study using nonloaded implants. J. Orthop. Res. 25, 772-778. https://doi.org/10.1002/jor.20272
  15. Jones, F. H. (2001) Teeth and bones: applications of surface science to dental materials and related biomaterials. Surf. Sci. Rep. 42, 75-205. https://doi.org/10.1016/S0167-5729(00)00011-X
  16. Lee, S. J., Oh, T. J., Bae, T. S., Lee, M. H., Soh, Y., Kim, B. I. and Kim, H. S. (2011) Effect of bisphosphonates on anodized and heattreated titanium surfaces: an animal experimental study. J. Periodontol. 82, 1035-1042. https://doi.org/10.1902/jop.2010.100608
  17. Meraw, S. J. and Reeve, C. M. (1999) Qualitative analysis of peripheral peri-implant bone and influence of alendronate sodium on early bone regeneration. J. Periodontol. 70, 1228-1233. https://doi.org/10.1902/jop.1999.70.10.1228
  18. Meraw, S. J., Reeve, C. M. and Wollan, P. C. (1999) Use of alendronate in peri-implant defect regeneration. J. Periodontol. 70, 151-158. https://doi.org/10.1902/jop.1999.70.2.151
  19. Motohashi, M., Shirota, T., Tokugawa, Y., Ohno, K., Michi, K. and Yamaguchi, A. (1999) Bone reactions around hydroxyapatite-coated implants in ovariectomized rats. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 87, 145-152. https://doi.org/10.1016/S1079-2104(99)70264-7
  20. Nepal, M., Li, L., Cho, H. K., Park, J. K. and Soh, Y. (2013) Kaempferol induces chondrogenesis in ATDC5 cells through activation of ERK/ BMP-2 signaling pathway. Food Chem. Toxicol. 62, 238-245 https://doi.org/10.1016/j.fct.2013.08.034
  21. Park, J., bauer, S., Schlegel, K. A., Neukam, E. W., von der Mark, K. and Schmuki, P. (2009) $TiO_2$ nanotube surfaces: 15nm-an optimal length scale of surface topography for cell adhesion and differentiation. Small 5, 666-671. https://doi.org/10.1002/smll.200801476
  22. Pazianas, M., Miller, P., Blumentals, W.A., Bernal, M. and Kothawala, P. A. (2007) A reivew of the literature on osteonecrosis of the jaw in patients with osteoporosis treated with oral bisphosphonates: prevalence, risk factors, and clinical characteristics. Clin. Ther. 29, 1548-1558. https://doi.org/10.1016/j.clinthera.2007.08.008
  23. Pohler, O. E. (2000) Unalloyed titanium for implants in bone surgery. Injury 31, 7-13. https://doi.org/10.1016/S0020-1383(99)00191-6
  24. Popat, K. C., Eltgroth, M., Latempa, T. J., Grimes, C. A. and Desai, T. A. (2007a) Decreased staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28, 4880-4888. https://doi.org/10.1016/j.biomaterials.2007.07.037
  25. Popat, K. C., Leoni, L., Grimes, C. A. and Desai, T. A. (2007b) Influence of engineered titania nanotubular surface on bone cells. Biomaterials 28, 3188-3197. https://doi.org/10.1016/j.biomaterials.2007.03.020
  26. Ratner, B. D. (2001) Replacing and renewing: synthetic materials, biomimetics, and tissue engineering in implant dentistry. J. Dent. Educ. 65, 1340-1347.
  27. Reszka, A. A., Halasy-Nagy, J. M., Masarachia, P. J. and Rodan, G. A. (1999) Bisphosphonates act directly on the osteoclast to induce caspase cleavage of mst 1 kinase during apoptosis. A link between inhibition of the mevalonate pathway and regulation of an apoptosis-promoting kinase. J. Biol. Chem. 274, 34967-34973. https://doi.org/10.1074/jbc.274.49.34967
  28. Shanbhag, A. S., Hasselman, C. T. and Rubash, H. E. (1997) The John Charnley Award. Inhibition of wear debris mediated osteolysis in a canine total hip arthroplasty model. Clin. Orthop. Relat. Res. 344, 33-43.
  29. Tengvall, P., Skoglund, B., Askendal, A., Aspenberg, P. (2004) Surface immobilized bisphosphonate improves stainless-steel screw fixation in rats. Biomaterials 25, 2133-2138. https://doi.org/10.1016/j.biomaterials.2003.08.049
  30. Textor, M., Sitting, C., Frauchiger ,V., Tosatti, S. and Brunette, D. (2001) Properties and biological significance of natural oxide films on titanium and its alloys. In Titanium in Medicine (D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Ed.), pp. 171-230. Springer-Verlag, Berlin.
  31. von Knoch, F., Jaquiery, C., Kowalsky, M., Schaeren, S., Alabre, C., Martin, I., Rubash, H. E. and Shanbhag, A. S. (2005) Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells. Biomaterials 26, 6941-6949. https://doi.org/10.1016/j.biomaterials.2005.04.059
  32. Xie, Z., Jiang, Y. and Zhang, D. Q. (2006) Simple analysis of four bisphosphonates simultaneously by reverse phase liquid chromatography using n-amylamine as volatile ion-pairing agent. J. Chromatogr. A 1104, 173-178.
  33. Yan, W. Q., Nakamura, T., Kobayashi, M., Kim, H. M., Miyaji, F. and Kokubo, T. (1997) Bonding of chemically treated titanium implants to bone. J. Biomed. Mater. Res. 37, 267-275. https://doi.org/10.1002/(SICI)1097-4636(199711)37:2<267::AID-JBM17>3.0.CO;2-B
  34. Yao, C. and Webster, T. J. (2009) Prolonged antibiotic delivery from anozided nanotubular titanium using a co-precipitation drugs loading method. J. Biomed. Mater. Res. B Appl. Biomater. 91, 87-595.

Cited by

  1. Does Local Ibandronate and/or Pamidronate Delivery Enhance Osseointegration? A Systematic Review 2016, https://doi.org/10.1111/jopr.12571
  2. Osseodensification for enhancement of spinal surgical hardware fixation vol.69, 2017, https://doi.org/10.1016/j.jmbbm.2017.01.020
  3. Bisphosphonate releasing dental implant surface coatings and osseointegration: A systematic review vol.12, pp.5, 2017, https://doi.org/10.1016/j.jtumed.2017.05.007
  4. hetero-structure for improving osteointegration vol.6, pp.23, 2018, https://doi.org/10.1039/C8TB00709H
  5. Bisphosphonate-related osteonecrosis of the jaw and dental implants vol.50, pp.1, 2014, https://doi.org/10.17096/jiufd.24812
  6. A comparison of micro-CT and histomorphometry for evaluation of osseointegration of PEO-coated titanium implants in a rat model vol.7, pp.None, 2014, https://doi.org/10.1038/s41598-017-16465-4
  7. Enhanced Osseointegration of Hierarchically Structured Ti Implant with Electrically Bioactive SnO2-TiO2 Bilayered Surface vol.10, pp.36, 2018, https://doi.org/10.1021/acsami.8b10928
  8. Customized Therapeutic Surface Coatings for Dental Implants vol.10, pp.6, 2014, https://doi.org/10.3390/coatings10060568
  9. Ten Years of Micro-CT in Dentistry and Maxillofacial Surgery: A Literature Overview vol.10, pp.12, 2014, https://doi.org/10.3390/app10124328