Browse > Article
http://dx.doi.org/10.4062/biomolther.2014.111

Evaluation of Osseointegration around Tibial Implants in Rats by Ibandronate-Treated Nanotubular Ti-32Nb-5Zr Alloy  

Nepal, Manoj (Department of Dental Pharmacology, School of Dentistry, and Institute of Oral Bioscience)
Li, Liang (Department of Dental Pharmacology, School of Dentistry, and Institute of Oral Bioscience)
Bae, Tae Sung (Department of Dental Biomaterials, School of Dentistry, Chonbuk National University)
Kim, Byung Il (Department of Future Plan and New Material Engineering, Sunchon National University)
Soh, Yunjo (Department of Dental Pharmacology, School of Dentistry, and Institute of Oral Bioscience)
Publication Information
Biomolecules & Therapeutics / v.22, no.6, 2014 , pp. 563-569 More about this Journal
Abstract
Materials with differing surfaces have been developed for clinical implant therapy in dentistry and orthopedics. This study was designed to evaluate bone response to titanium alloy containing Ti-32Nb-5Zr with nanostructure, anodic oxidation, heat treatment, and ibandronate coating. Rats were randomly assigned to two groups for implantation of titanium alloy (untreated) as the control group and titanium alloy group coated with ibandronate as the experimental group. Then, the implants were inserted in both tibiae of the rats for four weeks. After implantation, bone implant interface, trabecular microstructure, mechanical fixation was evaluated by histology, micro-computed tomography (${\mu}CT$) and the push-out test, respectively. We found that the anodized, heat-treated and ibandronate-coated titanium alloy triggered pronounced bone implant integration and early bone formation. Ibandronate-coated implants showed elevated values for removal torque and a higher level of BV/TV, trabecular thickness and separation upon analysis with ${\mu}CT$ and mechanical testing. Similarly, higher bone contact and a larger percentage bone area were observed via histology compared to untreated alloy. Furthermore, well coating of ibandronate with alloy was observed by vitro releasing experiment. Our study provided evidences that the coating of bisphosphonate onto the anodized and heat-treated nanostructure of titanium alloy had a positive effect on implant fixation.
Keywords
Dental implants; Osseointegration; Titanium alloy; Ibandronate; Nanotubes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Akesson, K. (2003) New approaches to pharmacological treatment of osteoporosis. Bull. World Health Organ. 81, 657-664.
2 Bae, I. H.,Yun, K. D., Kim, H. S., Jeong, B. C., Lim, H. P., Park, S. W., Lee, K. M., Lim, Y. C., Lee, K. K., Yang, Y. and Koh, J. T. (2010) Anodic oxidized nanotubular titanium implants enhance bone morphogenic protein-2 delivery. J. Biomed. Mater Res. B Appl. Biomater. 93, 484-491.
3 Balasundaram, G., Yao, C. and Webster, T. J. (2008) $TiO_2$ nanotubes functionalized with regions of bone morphogenetic protein-2 increase osteoblast adhesion. J. Biomed. Mater. Res. A 84, 447-453.
4 Bhandari, M., Bajammal, S., Guyatt, G. H, Griffith, L., Busse, J. W., Schunemann, H. and Einhorn, T. A. (2005) Effect of bisphosphonates on periprosthetic bone mineral density after total joint arthroplasty. A. meta-analysis. J. Bone Joint Surg. Am. 87, 293-301.   DOI   ScienceOn
5 Brammer, K. S., Oh, S., Cobb, C. J., Bjursten, L. M., van der Heyde, H. and Jin, S. (2009) Improved bone forming functuality on diametercontrolled $TiO_2$ nanotube furface. Acta Biometer. 5, 3215-3223.   DOI   ScienceOn
6 Carano, A., Teitlebaum, S. L., Konsek, J. K., Schlesinger, P. H. and Blair, H. C. (1990) Bisphosphonates directly inhibit the resorption activity of isolated avian osteoclasts in vitro. J. Clin. Invest. 85, 456-461.   DOI
7 Cohen D. P. (2003) Anti-osteoporotic medications: traditional and nontraditional. Clin. Obstet.Gynecol. 46, 341-348.   DOI
8 Fleisch, H. (1998) Bisphosphonates: mechanisms of action. Endocr. Rev. 19, 80-100.   DOI
9 Garcia-Moreno, C., Serrano, S., Nacher, M., Farre, M., Diez, A., Marinoso, M. L., Carbonell, J., Mellibovsky, L., Nogues, X., Ballester, J. and Aubia, J. (1998) Effect of alendronate on cultured normal human osteoblasts. Bone 22, 233-239.   DOI   ScienceOn
10 Jakobsen, T., Kold, S., Bechtold, J. E., Elmengaard, B. and Soballe, K. (2007) Local alendronate increases fixation of implants inserted with bone compaction: 12-week canine study. J. Orthop. Res. 25, 432-441.   DOI
11 Giavaresi, G., Giardino, R., Ambrosio, L., Battiston, G., Gerbasi, R., Fini, M, Rimondini, L. and Torricelli, P. (2003) In vitro biocompatibility of titanium oxide for prosthetic devices nanostructured by low pressure metal-organic chemical vapor deposition. Int. J. Artif. Organs 26, 774-780.   DOI
12 Hilding, M. and Aspenberg, P. (2006) Postoperative clodronate decreases prosthetic migration: 4-year follow-up of a randomized radiostereometric study of 50 total knee patients. Acta Orthop. 77, 912-916.   DOI
13 Hughes, D. E., MacDonald, B. R., Russell, R. G. and Gowen, M. (1989) Inhibition of osteoclast-like cell formation by bisphosphonates in longterm cultures of human bone marrow. J. Clin. Invest. 83, 1930-1935.   DOI
14 Meraw, S. J. and Reeve, C. M. (1999) Qualitative analysis of peripheral peri-implant bone and influence of alendronate sodium on early bone regeneration. J. Periodontol. 70, 1228-1233.   DOI
15 Jensen, T. B., Bechtold, J. E., Chen, X. and Soballe, K. (2007) Systemic alendronate treatment improves fixation of press-fit implants: a canine study using nonloaded implants. J. Orthop. Res. 25, 772-778.   DOI
16 Jones, F. H. (2001) Teeth and bones: applications of surface science to dental materials and related biomaterials. Surf. Sci. Rep. 42, 75-205.   DOI   ScienceOn
17 Lee, S. J., Oh, T. J., Bae, T. S., Lee, M. H., Soh, Y., Kim, B. I. and Kim, H. S. (2011) Effect of bisphosphonates on anodized and heattreated titanium surfaces: an animal experimental study. J. Periodontol. 82, 1035-1042.   DOI
18 Meraw, S. J., Reeve, C. M. and Wollan, P. C. (1999) Use of alendronate in peri-implant defect regeneration. J. Periodontol. 70, 151-158.   DOI
19 Motohashi, M., Shirota, T., Tokugawa, Y., Ohno, K., Michi, K. and Yamaguchi, A. (1999) Bone reactions around hydroxyapatite-coated implants in ovariectomized rats. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 87, 145-152.   DOI
20 Nepal, M., Li, L., Cho, H. K., Park, J. K. and Soh, Y. (2013) Kaempferol induces chondrogenesis in ATDC5 cells through activation of ERK/ BMP-2 signaling pathway. Food Chem. Toxicol. 62, 238-245   DOI
21 Popat, K. C., Eltgroth, M., Latempa, T. J., Grimes, C. A. and Desai, T. A. (2007a) Decreased staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28, 4880-4888.   DOI   ScienceOn
22 Popat, K. C., Leoni, L., Grimes, C. A. and Desai, T. A. (2007b) Influence of engineered titania nanotubular surface on bone cells. Biomaterials 28, 3188-3197.   DOI   ScienceOn
23 Park, J., bauer, S., Schlegel, K. A., Neukam, E. W., von der Mark, K. and Schmuki, P. (2009) $TiO_2$ nanotube surfaces: 15nm-an optimal length scale of surface topography for cell adhesion and differentiation. Small 5, 666-671.   DOI   ScienceOn
24 Pazianas, M., Miller, P., Blumentals, W.A., Bernal, M. and Kothawala, P. A. (2007) A reivew of the literature on osteonecrosis of the jaw in patients with osteoporosis treated with oral bisphosphonates: prevalence, risk factors, and clinical characteristics. Clin. Ther. 29, 1548-1558.   DOI   ScienceOn
25 Pohler, O. E. (2000) Unalloyed titanium for implants in bone surgery. Injury 31, 7-13.   DOI
26 Ratner, B. D. (2001) Replacing and renewing: synthetic materials, biomimetics, and tissue engineering in implant dentistry. J. Dent. Educ. 65, 1340-1347.
27 Reszka, A. A., Halasy-Nagy, J. M., Masarachia, P. J. and Rodan, G. A. (1999) Bisphosphonates act directly on the osteoclast to induce caspase cleavage of mst 1 kinase during apoptosis. A link between inhibition of the mevalonate pathway and regulation of an apoptosis-promoting kinase. J. Biol. Chem. 274, 34967-34973.   DOI   ScienceOn
28 Shanbhag, A. S., Hasselman, C. T. and Rubash, H. E. (1997) The John Charnley Award. Inhibition of wear debris mediated osteolysis in a canine total hip arthroplasty model. Clin. Orthop. Relat. Res. 344, 33-43.
29 Tengvall, P., Skoglund, B., Askendal, A., Aspenberg, P. (2004) Surface immobilized bisphosphonate improves stainless-steel screw fixation in rats. Biomaterials 25, 2133-2138.   DOI   ScienceOn
30 Textor, M., Sitting, C., Frauchiger ,V., Tosatti, S. and Brunette, D. (2001) Properties and biological significance of natural oxide films on titanium and its alloys. In Titanium in Medicine (D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Ed.), pp. 171-230. Springer-Verlag, Berlin.
31 von Knoch, F., Jaquiery, C., Kowalsky, M., Schaeren, S., Alabre, C., Martin, I., Rubash, H. E. and Shanbhag, A. S. (2005) Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells. Biomaterials 26, 6941-6949.   DOI   ScienceOn
32 Xie, Z., Jiang, Y. and Zhang, D. Q. (2006) Simple analysis of four bisphosphonates simultaneously by reverse phase liquid chromatography using n-amylamine as volatile ion-pairing agent. J. Chromatogr. A 1104, 173-178.
33 Yan, W. Q., Nakamura, T., Kobayashi, M., Kim, H. M., Miyaji, F. and Kokubo, T. (1997) Bonding of chemically treated titanium implants to bone. J. Biomed. Mater. Res. 37, 267-275.   DOI   ScienceOn
34 Yao, C. and Webster, T. J. (2009) Prolonged antibiotic delivery from anozided nanotubular titanium using a co-precipitation drugs loading method. J. Biomed. Mater. Res. B Appl. Biomater. 91, 87-595.