• Title/Summary/Keyword: Titanium Nitride (TiN)

Search Result 112, Processing Time 0.023 seconds

Mechanical Properties of High-Hardness TiNX Thin Films Deposited by Pure Nitrogen Plasma Using Magnetron Sputtering Deposition (마그네트론 스퍼터링 증착법을 사용하여 순수한 질소 플라즈마에 의해 성막된 고경도 TiNX 박막의 역학적 특성)

  • Lee, Chang-Hyun;Rhee, Byung-Roh;Bae, Kang;Park, Chang-Hwan;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.514-519
    • /
    • 2017
  • TiN (titanium nitride) films were prepared using the RF magnetron sputtering technique. The films were deposited by pure $N_2$ plasma sputtering. Their mechanical properties, such as nano-indentation hardness, friction coefficient, and surface wettability, have been investigated. X-ray diffraction (XRD) studies revealed that the orientation of $TiN_X$ films changed towards the (111) orientation with decreasing working pressure due to a strong compressive stress during deposition. The strongest TiN (111) orientation was found when the film was deposited at a working pressure of 1 Pa. This film showed the largest hardness (16 GPa) and smallest friction coefficient (0.17) among the studied samples. Moreover, this film was found to be accompanied by a water-repellent surface with water contact angle more than $100^{\circ}$.

A study on copper thin film growth by chemical vapor deposition onto silicon substrates (실리콘 기판 위에 화학적 방법으로 증착된 구리 박막의 특성 연구)

  • 조남인;박동일;김창교;김용석
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.318-326
    • /
    • 1996
  • This study is to investigate a chemical vapor deposition technique of copper film which is expected to be more useful as metallizations of microcircuit fabrication. An experimental equipment was designed and set-up for this study, and a Cu-precursor used that is a metal-organic compound, named (hfac)Cu(I)VTMS ; (hevaflouoroacetylacetonate trimethyvinylsilane copper). Base pressure of the experimental system is in $10^{-6}$ Torr, and the chamber pressure and the substrate temperature can be controlled in the system. Before the deposition of copper thin film, tungsten or titanium nitride film was deposited onto the silicon wafer. Helium has been used as carrier gas to control the deposition rate. As a result, deposition rate was measured as $1,800\;{\AA}/min$ at $220^{\circ}C$ which is higher than the results of previous studies, and the average surface roughness was measured as about $200\;{\AA}$. A deposition selectivity was observed between W or TiN and $SiO_{2}$ substrates below $250^{\circ}C$, and optimum results are observed at $180^{\circ}C$ of substrate temperature and 0.8 Torr of chamber pressure.

  • PDF

Electrical Behavior of Aluminum Nitride Ceramics Sintered with Yttrium Oxide and Titanium Oxide

  • Lee, Jin-Wook;Lee, Won-Jin;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.635-640
    • /
    • 2016
  • Electrical behavior of AlN ceramics sintered with $Y_2O_3$ as a sintering aid has been investigated with respect to additional $TiO_2$ dopant. From the impedance spectroscopy, it was found that the grain and grain boundary conductivities have greatly decreased with addition of $TiO_2$ dopant. The $TiO_2$ dopant also increased the activation energy of the grain conductivity by about 0.37 eV; this increase was attributed to the formation of an associate between Al vacancies and Ti ions at the Al sites. Similarly, the electronic conductivity was reduced by $TiO_2$ addition. However, $TiO_2$ solubility in AlN grains was below the detection limit of typical EDX analysis. Grain boundary was clean, without liquid films, but did show yttrium segregation. The transference number of ions was close to 1, showing that AlN is a predominantly ionic conductor. Based on the observed results, the implications of using AlN applications as insulators have been discussed.

Electrical Properties of DC Sputtered Titanium Nitride Films with Different Processing Conditions and Substrates

  • Jin, Yen;Kim, Young-Gu;Kim, Jong-Ho;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.455-460
    • /
    • 2005
  • Deposition of TiN$_{x}$ film was conducted with a DC sputtering technique. The effect of the processing parameters such as substrate temperature, deposition time, working pressure, bias power, and volumetric flowing rate ratio of Ar to N$_{2}$ gas on the resistivity of TiN$_{x}$ film was systematically investigated. Three kinds of substrates, soda-lime glass, (100) Si wafer, and 111m thermally grown (111) SiO$_{2}$ wafer were used to explore the effect of substrate. The phase of TiN$_{x}$ film was analyzed by XRD peak pattern and deposition rate was determined by measuring the thickness of TiNx film through SEM cross-sectional view. Resistance was obtained by 4 point probe method as a function of processing parameters and types of substrates. Finally, optimum condition for synthesizing TiN$_{x}$ film having lowest resistivity was discussed.

A Study on the Wear Resistance Behaviors of TiN Films on Tool Steels by Cathode Arc Ion Plating Method (음극아크 이온 플레이팅법에 의한 공구강상의 TiN 피막의 내마모 특성에 관한 연구)

  • 김강범;정창준;백영남
    • Journal of Surface Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.343-351
    • /
    • 1995
  • Titanium nitride films have been prepared on various substrates (silicon wafer, HSS) by cathode arc ion plating process to measure microhardness, adhesion and wear-resistant behaviors by changing the substrate bias voltages (0∼-300V), thickness and roughness. Microhardnesses were measured by micro vickers hardness tester, the adhesion strengths were evaluated by acoustic signals through the scratch test with incremental applied load. As the substrate bias voltages were increased, the {111} orientation was predominant, the microhardnesses and adhesion strengths of tool steel were observed to be stronger than those of without subatrate bias voltage. Adhesion strengths of the substrate bias were 4-7 times higher than those of without the substrate bias, confirmed by SEM with EDX. Wear resistances were used pin-on-disk tribotester and TiN costing reduced the abrasive wear. As the substrate bias was increased, the weight loss and the friction coefficient was decreased.

  • PDF

The Effects of Surface Pretreatments on Adhesion Strength of TiN Films by DC Magnetron Sputtering (표면전처리가 반응성 스퍼터링법으로 제조한 TiN 코팅층의 밀착력에 미치는 영향)

  • 김흥윤;백운승;권식철;김규호
    • Journal of Surface Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.225-234
    • /
    • 1993
  • Titanium nitride coatings were deposited onto SUS304 stainless steel substrates pretreated by mechanical scrubbing, chemical etching at 50% HCl solution and Ar ion etching. Adhesion strength were measured by scratch tester and confirmed by SEM with EDS. Adhesion strength of Ar ion etched substrate was 10 to 15 times higher than that of mechanical scrubbed or chemical etched substrate. Ar ion etching brought about an uniform and fine spherical shaped surface, while chemical etching gave rise to a rough and irregular surface on SEM micrograph. It was suggested that higher adhesion strength might be caused by anchoring effect of Ar ion etched surface prior to TiN deposition.

  • PDF

Properties of TiN Thin Films Synthesized with HiPIMS and DC Sputtering (HiPIMS와 DC 스퍼터링으로 제조한 TiN 박막 특성)

  • Yang, Ji-Hun;Byeon, In-Seop;Kim, Seong-Hwan;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.93-93
    • /
    • 2017
  • 고전력 펄스 전원공급장치를 이용한 마그네트론 스퍼터링(high-power impulse magnetron sputtering; HiPIMS)과 직류(direct current; DC) 전원공급장치를 이용한 마그네트론 스퍼터링(DC 스퍼터링)을 이용하여 제조한 티타늄 질화물(titanium nitride; TiN) 박막의 특성을 비교하였다. HiPIMS와 DC 스퍼터링 공정 중에 빗각증착을 적용하여 TiN 박막의 미세구조와 기계적 특성의 변화를 확인하였다. TiN 박막을 코팅하기 위한 기판으로 스테인리스 강판(SUS304)과 초경(cemented carbide; WC-10wt.%Co)을 사용하였다. 기판은 알코올과 아세톤으로 초음파 처리를 실시하여 기판 표면의 불순물을 제거하였다. 기판 청정 후 진공용기 내부의 기판홀더에 기판을 장착하고 $2.0{\times}10^{-5}torr$의 기본 압력까지 진공배기를 실시하였다. 진공 용기의 압력이 기본 압력에 도달하면 아르곤(Ar) 가스를 진공용기 내부로 ${\sim}10^{-2}torr$의 압력으로 주입하고 기판홀더에 라디오 주파수(radio frequency; rf) 전원공급장치를 이용하여 - 800 V의 전압을 인가하여 글로우 방전을 발생시켜 30 분간 기판 표면의 산화막을 제거하는 기판청정을 실시하였다. 기판청정이 완료되면 기본 압력까지 진공배기를 실시하고 Ar과 질소($N_2$)의 혼합 가스를 진공용기 내부로 ${\sim}10^{-3}torr$의 압력으로 주입하여 HiPIMS와 DC 스퍼터링으로 TiN 박막 제조를 실시하였다. 빗각의 크기는 $45^{\circ}$$-45^{\circ}$이었다. 제조된 TiN 박막은 주사전자 현미경, 비커스 경도 측정기 그리고 X-선 회절 분석기를 이용하여 특성을 분석하였다. HiPIMS로 제조한 TiN 박막은 기판 전압을 인가하지 않아도 색상이 노란색을 보이지만, DC 스퍼터링으로 제조한 TiN 박막은 기판 전압을 인가하지 않으면 노란색을 보이지 않고 어두운 갈색에 가까운 색을 보였다. TiN 박막의 경도는 HiPIMS로 제조한 TiN 박막이 DC 스퍼터링으로 제조한 TiN 박막보다 높았다. 이러한 TiN 박막의 특성 차이는 DC 스퍼터링과 비교하여 높은 HiPIMS의 이온화율에 의한 결과로 판단된다. 빗각을 적용한 TiN 박막은 미세구조 변화를 보였으며 이러한 미세구조 변화는 TiN 박막의 특성에 영향을 미치는 것을 확인하였다.

  • PDF

Characterization of Nitrogen-Doped $TiO_2$ Thin Films Prepared by Metalorganic Chemical Vapor Deposition (유기금속 화학 기상증착법으로 실리콘 기판위에 증착된 질소치환 $TiO_2$ 박막의 특성분석)

  • 이동헌;조용수;이월인;이전국;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1577-1587
    • /
    • 1994
  • TiO2 thin films with the substitution of oxygen with nitrogen were deposited on silicon substrate by metalorganic chemical vapor deposition (MOCVD) using Ti(OCH(CH3)2)4 (titanium tetraisopropoxide, TTIP) and N2O as source materials. X-ray diffraction (XRD) results indicated that the crystal structure of the deposited thin films was anatase TiO2 with only (101) plane observed at the deposition temperatures of 36$0^{\circ}C$ and 38$0^{\circ}C$, and with (101) and (200) plane at above 40$0^{\circ}C$. Raman spectroscopic results indicated that the crystal structure was anatase TiO2 in accordance with the XRD results without any rutile, fcc TiN, or hcp TiN structure. No fundamental difference was observed with temperature increase, but the peak intensity at 194.5 cm-1 increased with strong intensity at 143.0 cm-1 for all samples. The crystalline size of the films varied from 49.2 nm to 63.9 nm with increasing temperature as determined by slow-scan XRD experiments. The refractive index of the films increased from 2.40 to 2.55 as temperature increased. X-ray photoelectron spectroscopy (XPS) study showed only Ti 2s, Ti 2p, C 1s, O 1s and O 2s peaks at the surface of the film. The composition of the surface was estimated to be TiO1.98 from the quatitative analysis. In the bulk of the film Ti 2s, Ti 2p, O 1s, O 2s, N 1s and N 2s were detected, and Ti-N bonding was observed due to the substitution of oxygen with nitrogen. A satellite structure was observed in the Ti 2p due to the Ti-N bonding, and the composition of titanium nitride was determined to be about TiN1.0 from the position of the binding energy of Ti-N 2p3/2 and the quatitative analysis. The spectrum of Ti 2p energy level could be the sum of a 4, 5, or 6 Gaussian curve reconstruction, and the case of the sum of the 6 Gaussian curve reconstruction was physically most meaningful. From the results of Auger electron spectroscopy (AES), it was known that the composition was not varied significantly throughout the whole thickness of the film, and silicon oxide was not observed at the interface between the film and the substrate. The composition of the film was possible (TiO2)1-x.(TiN)x or TiO2-2xNx and in this experimental condition x was found to be about 0.21-0.16.

  • PDF

Plasma pretreatment of the titanium nitride substrate fur metal organic chemical vapor deposition of copper (Cu-MOCVD를 위한 TiN기판의 플라즈마 전처리)

  • Lee, Chong-Mu;Lim, Jong-Min;Park, Woong
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.361-366
    • /
    • 2001
  • It is difficult to obtain high Cu nucleation density and continuous Cu films in Cu-MOCVD without cleaning the TiN substrate prior to Cu deposition. In this study effects of plasma precleaning on the Cu nucleation density were investigated using SEM, XPS, AES, AFM analyses. Direct plasma pretreatment is much more effective than remote plasma pretreatment in enhancing Cu nucleation. Cleaning effects are enhanced with increasing the rf-power and the plasma exposure time in hydrogen plasma pretreatment. The mechanism through which Cu nucleation is enhanced by plasma pretreatment is as follows: Hydrogen ion\ulcorner in the hydrogen plasma react with TiN to form Ti and $NH_3$ Cu nucleation is easier on the Ti substrate than TiN substrate.

  • PDF

Evaluation of Fatigue Fracture Life for TiN Coated Abutment Screw in Dental Implant

  • Choe, Han-Cheol;Chung, Chae-Heon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.115-116
    • /
    • 2012
  • In this study, fitness and fatigue test were performed to estimate the coating effects of abutment screw for implant system after fatigue test. The purpose of this study was to investigate fatigue fracture phenomena of dental implant fixture used titanium nitride coated abutment screw under cyclic load.

  • PDF