• Title/Summary/Keyword: Titanium Nitride

Search Result 134, Processing Time 0.032 seconds

A Study on the Dielectric Characteristics and Microstructure of $Si_3N_4$ Metal-Insulator-Metal Capacitors ($Si_3N_4$를 이용한 금속-유전체-금속 구조 커패시터의 유전 특성 및 미세구조 연구)

  • 서동우;이승윤;강진영
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.162-166
    • /
    • 2000
  • High quality $Si_3N_4$ metal-insulator-metal (MIM) capacitors were realized by plasma enhanced chemical vapor deposition (PECVD). Titanium nitride (TiN) adapted as a diffusion barrier reduced the interfacial reaction between $Si_3N_4$ dielectric layer and aluminum metal electrode showing neither hillock nor observable precipitate along the interface. The capacitance and the current-voltage characteristics of the MIM capacitors showed that the minimum thickness of $Si_3N_4$ layer should be limited to 500 $\AA$ under the present process, below which most of the capacitors were electrically shorted resulting in the devastation of on-wafer yield. According to the transmission electron microscopy (TEM) on the cross-sectional microstructure of the capacitors, the dielectric breakdown was caused by slit-like voids formed at the interface between TiN and $Si_3N_4$ layers when the thickness of $Si_3N_4$ layer was less than 500 $\AA$. Based on the calculation of thermally-induced residual stress, the formation of voids was understood from the mechanistic point of view.

  • PDF

Microstructure, Mechanical and Wear Properties of Hot-pressed $Si_3N_4-TiB_2$ Composite

  • Kim, Hyun-Jin;Lee, Soo-Whon;Tadachika Nakayama;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.324-330
    • /
    • 1999
  • $Si_3N_4$-$TiB_2$ with 2 wt% $Al_2O_3$ and 4 wt% $Y_2O_3$ additives was hot pressed in a flowing $N_2$ environment with varying $TiB_2$ content from 10 to 50 vol%. Variations of mechanical (hardness, fracture toughness, and flexual strength), and tribological properties as a function of $TiB_2$ content were investigated. As the content of $TiB_2$ increased, relative density decreased due to the chemical reaction of $TiB_2$in $N_2$ environment. The reduction of density causes mechanical properties to be degraded with an increase of $TiB_2$ in $Si_3N_4$. Tribological properties were dependent of microstructure as well as mechanical properties, however, they were degraded strongly by the chemical reaction of $Si_3N_4$-$TiB_2$ during hot pressing in $N_2$ environment. SEM and TEM observations, and X-ray diffraction analysis that the chemical reaction products at the interface are TiCN, Si, and $SiO_2$. Also, the comparison of XRD patterns of the $Si_3N_4$-40 vol% $TiB_2$ composites hot pressed at $1,750^{\circ}C$ for 1 hour between in $N_2$ and in Ar gas was made. The XRD peaks of Si and $SiO_2$ were not found in Ar, but still a weak peak of TiCN was presented.

  • PDF

Novel Ni-Silicide Structure Utilizing Cobalt Interlayer and TiN Capping Layer and its Application to Nano-CMOS (Cobalt Interlayer 와 TiN capping를 갖는 새로운 구조의 Ni-Silicide 및 Nano CMOS에의 응용)

  • 오순영;윤장근;박영호;황빈봉;지희환;왕진석;이희덕
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.12
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, a novel Ni silicide technology with Cobalt interlayer and Titanium Nitride(TiN) capping layer for sub 100 nm CMOS technologies is presented, and the device parameters are characterized. The thermal stability of hi silicide is improved a lot by applying co-interlayer at Ni/Si interface. TiN capping layer is also applied to prevent the abnormal oxidation of NiSi and to provide a smooth silicidc interface. The proposed NiSi structure showed almost same electrical properties such as little variation of sheet resistance, leakage current and drive current even after the post silicidation furnace annealing at $700^{\circ}C$ for 30 min. Therefore, it is confirmed that high thermal robust Ni silicide for the nano CMOS device is achieved by newly proposed Co/Ni/TiN structure.

Properties of TiN Thin Films Synthesized with HiPIMS and DC Sputtering (HiPIMS와 DC 스퍼터링으로 제조한 TiN 박막 특성)

  • Yang, Ji-Hun;Byeon, In-Seop;Kim, Seong-Hwan;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.93-93
    • /
    • 2017
  • 고전력 펄스 전원공급장치를 이용한 마그네트론 스퍼터링(high-power impulse magnetron sputtering; HiPIMS)과 직류(direct current; DC) 전원공급장치를 이용한 마그네트론 스퍼터링(DC 스퍼터링)을 이용하여 제조한 티타늄 질화물(titanium nitride; TiN) 박막의 특성을 비교하였다. HiPIMS와 DC 스퍼터링 공정 중에 빗각증착을 적용하여 TiN 박막의 미세구조와 기계적 특성의 변화를 확인하였다. TiN 박막을 코팅하기 위한 기판으로 스테인리스 강판(SUS304)과 초경(cemented carbide; WC-10wt.%Co)을 사용하였다. 기판은 알코올과 아세톤으로 초음파 처리를 실시하여 기판 표면의 불순물을 제거하였다. 기판 청정 후 진공용기 내부의 기판홀더에 기판을 장착하고 $2.0{\times}10^{-5}torr$의 기본 압력까지 진공배기를 실시하였다. 진공 용기의 압력이 기본 압력에 도달하면 아르곤(Ar) 가스를 진공용기 내부로 ${\sim}10^{-2}torr$의 압력으로 주입하고 기판홀더에 라디오 주파수(radio frequency; rf) 전원공급장치를 이용하여 - 800 V의 전압을 인가하여 글로우 방전을 발생시켜 30 분간 기판 표면의 산화막을 제거하는 기판청정을 실시하였다. 기판청정이 완료되면 기본 압력까지 진공배기를 실시하고 Ar과 질소($N_2$)의 혼합 가스를 진공용기 내부로 ${\sim}10^{-3}torr$의 압력으로 주입하여 HiPIMS와 DC 스퍼터링으로 TiN 박막 제조를 실시하였다. 빗각의 크기는 $45^{\circ}$$-45^{\circ}$이었다. 제조된 TiN 박막은 주사전자 현미경, 비커스 경도 측정기 그리고 X-선 회절 분석기를 이용하여 특성을 분석하였다. HiPIMS로 제조한 TiN 박막은 기판 전압을 인가하지 않아도 색상이 노란색을 보이지만, DC 스퍼터링으로 제조한 TiN 박막은 기판 전압을 인가하지 않으면 노란색을 보이지 않고 어두운 갈색에 가까운 색을 보였다. TiN 박막의 경도는 HiPIMS로 제조한 TiN 박막이 DC 스퍼터링으로 제조한 TiN 박막보다 높았다. 이러한 TiN 박막의 특성 차이는 DC 스퍼터링과 비교하여 높은 HiPIMS의 이온화율에 의한 결과로 판단된다. 빗각을 적용한 TiN 박막은 미세구조 변화를 보였으며 이러한 미세구조 변화는 TiN 박막의 특성에 영향을 미치는 것을 확인하였다.

  • PDF

SIMS Depth Profiling Analysis of Cl in $TiCl_4$ Based TiN Film by Using $ClCs_2^+$ Cluster Ions

  • Gong, Su-Jin;Park, Sang-Won;Kim, Jong-Hun;Go, Jung-Gyu;Park, Yun-Baek;Kim, Ho-Jeong;Kim, Chang-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.161-161
    • /
    • 2012
  • 질화티타늄(Titanium Nitride, TiN)은 화학적 안정성이 우수하고, N/Ti 원소 비율에 따라 열전도성 및 전기전도성이 변화하는 특성을 가지고 있어서 Metal Insulator Silicon (MIS) 나 Metal Insulator Metal (MIM) capacitor의 metal electrode 물질로 적용되고 있다. $TiCl_4$$NH_3$ gas를 이용하여 $500^{\circ}C$ 이상의 고온 조건에서 Chemical Vapor Deposition (CVD) 법으로 TiN 박막을 증착하는 방식이 가장 널리 사용되고 있으나, TiN 박막 내의 Chlorine (Cl) 원소가 SiO2 두께와 누설전류 밀도를 증가시키는 요인으로 작용하므로 Cl의 거동 및 함량 제어를 통한 전기적인 특성의 향상 평가가 요구되고 있다[1-3]. 본 실험에서는 $SiO_2$ 위에 TiN을 적층 한 구조에서 magnetic sector type의 Secondary Ion Mass Spectrometry (SIMS)를 이용하여 Cl 원소의 검출도 개선 방법을 연구하였다. 일반적인 $Cs^+$ 이온을 이용하여 $Cl^-$ 이온을 검출할 경우에는 TiN 하부에 $SiO_2$가 존재함에 따른 charging effect와 mass interference가 발생되는 문제점이 관찰되었다. 이를 개선하기 위해 Cl과 Cs 원소가 결합된 $ClCs^+$ cluster ion을 검출하는 방법을 시도하였으나, Cl- 이온 검출 방식에 비해 오히려 낮은 검출도를 나타내었으나 Cl 원소가 속하는 halogen 족 원소의 높은 전자 친화도 특성을 이용한 $ClCs_2^+$ cluster ion을 검출하는 방법[4]을 적용한 경우에는 $ClCs^+$ 방식에 비해 검출도가 3order 개선되는 결과를 확보하였으며, 이 결과를 토대로 Cl dose ($atoms/cm^2$) 와 Rs (ohm/sq) 간의 상관 관계에 대해 고찰하고자 한다.

  • PDF

Plasma pretreatment of the titanium nitride substrate fur metal organic chemical vapor deposition of copper (Cu-MOCVD를 위한 TiN기판의 플라즈마 전처리)

  • Lee, Chong-Mu;Lim, Jong-Min;Park, Woong
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.361-366
    • /
    • 2001
  • It is difficult to obtain high Cu nucleation density and continuous Cu films in Cu-MOCVD without cleaning the TiN substrate prior to Cu deposition. In this study effects of plasma precleaning on the Cu nucleation density were investigated using SEM, XPS, AES, AFM analyses. Direct plasma pretreatment is much more effective than remote plasma pretreatment in enhancing Cu nucleation. Cleaning effects are enhanced with increasing the rf-power and the plasma exposure time in hydrogen plasma pretreatment. The mechanism through which Cu nucleation is enhanced by plasma pretreatment is as follows: Hydrogen ion\ulcorner in the hydrogen plasma react with TiN to form Ti and $NH_3$ Cu nucleation is easier on the Ti substrate than TiN substrate.

  • PDF

Composition, Structure and Resistivity of TiN Thin, Films Deposited by RF PECVD (RF PECVD법에 의해 증착된 TiN 박막의 조성, 구조 및 전기적 특성)

  • Jeon, Byeong-Hyeok;Kim, Jong-Seok;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.5 no.5
    • /
    • pp.552-559
    • /
    • 1995
  • Titanium nitride films were deposited on the (100) oriented-p-type silicon substrates of RF plasma enhanced chemical vapor depositiom\n using a gaseous mixutre of TiCl$_{4}$, N$_{2}$, H$_{2}$ and Ar. The chemincal composition, structure and the rsistivituy of the films were investigated with the deposition variables such as the flow rate ratio of N$_{2}$/TiCl$_{4}$, the deposition temperature and the RF power. The deposition rate increases with increasing the flow rate ratio of N$_{2}$TiCl$_{4}$ and RF power, while the rate decreases with increasing the deposition temperature. As the flow rate ratio of N$_{2}$/TiCl$_{4}$ and depostion temperature increases within proper RF pwoer, the Cl concentartion in the films decreases and the stoichiometry and crystallingiy are improved, so decreases the resistivity of the films. The films depostied under the condition of the N$_{2}$/TiCl$_{4}$ ratio of 30, the RF power of 50W and the depostion temperature of 62$0^{\circ}C$ had the Cl content of 1.5at% and the resistivity of 56㏁cm. Also, the bottom coverage of the films was above 60% on the step with the width and depth of 0.6${\mu}{\textrm}{m}$$\times$0.6${\mu}{\textrm}{m}$.

  • PDF

Effect of Deposition Parameters on the Properties of TiN Thin Films Deposited by rf Magnetron Sputtering (rf 마그네트론 스퍼링에 의하여 증착된 TiN 박막의 물성에 대한 증착변수의 영향)

  • Lee, Do Young;Chung, Chee Won
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.676-680
    • /
    • 2008
  • TiN thin films were deposited on a $SiO_2(2000{\AA})/Si$ substrate by radio-frequency(rf) magnetron sputtering. TiN films were prepared under varying $N_2$ concentration in $N_2/Ar$ gas mix, rf power and gas pressure, and investigated in terms of deposition rate, resistivity and surface morphology. As $N_2$ concentration increased, the deposition rate and the surface roughness of the films decreased and the resistivity increased. With increasing rf power, the deposition rate increased but the resistivity was decreased. As gas pressure increased, little change in deposition rate was obtained but the resistivity rapidly increased. TiN film with resistivity of $2.46{\times}10^{-4}{\Omega}cm$ at 1 mTorr was formed. It was observed that there existed a correlation between the deposition rate and resistivity. In particular, the gas pressure has a strong influence on the resistivity of thin films.

Mechanical Stability of TiN and DLC Coated Instrument of Pedicle Screw System (TiN 및 DLC 코팅된 척추경나사못시스템 수술기구의 기계적 안정성 분석)

  • Kang, Kwan-Su;Jung, Tae-Gon;Yang, Jae-Woong;Woo, Su-Heon;Park, Tea-Hyun;Jeong, Yong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.163-170
    • /
    • 2019
  • Durability of instrument is one of the most important factor to ensure accurate treatment and decrease failure for the orthopedic surgical operation. Normally, a set-screw driver tip has been processed with hard coating for their higher durability and wear resistance. And several surface modification methods were obtained such as titanium nitride (TiN) coating, diamond like carbon coating, other nitriding, and etc. In this study, we have surface modified on set-screw driver tip with TiN and DLC, investigated whether the TiN and DLC coatings affect the mechanical properties and durability of the set-screw driver tip in the pedicle screw system. The surface morphologies were observed with scanning-electron microscopy (SEM), and the static/dynamic torsional properties were investigated with universal testing machine based on ASTM F543. Coating thickness of each coatings were commonly around $1^{\circ}C$. Static torsional stiffness, and ultimate torque values for DLC and TiN coated samples were significantly higher than those of non-coated sample by the pared T-test. Surface morphology of after the dynamic torsional test was more clean with less scratch or friction traces from DLC coating than that of TiN coating and non-coated sample.

Detorque force and surface change of coated abutment screw after repeated closing and opening (코팅된 지대주 나사의 반복 착탈 후 풀림력과 표면변화에 대한 연구)

  • Jang, Jong-Suk;Kim, Hee-Jung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.500-510
    • /
    • 2008
  • Statement of problem: Recently researches about WC/C (Tungsten Carbide/Carbon) or TiN (Titanium Nitride) coating on abutment screws are going on. It decreases friction coefficient, resistance against corrosion and withdrawal of physical fragility when the coating is applied to the metal surfaces. It is reported that coated abutment screws improved abrasion, adaptability and detorque force. Purpose: This study is about the effects of coated abutment screws on loosening of screw and for the purpose of solving the loosening phenomenon of abutment screws which is clinical problem. Material and methods: Detorque force and surface changes are compared when 10 times of repeated closing and opening are applied to both uncoated titanium abutment screws (Group A) and coated abutment screws with WC/C (Group B) and TiN (Group C). Each group was made up of 10 abutment screws. Results: 1. Before repeated closing and opening, Somewhat rough surface with regular direction was observed in Group A. Coated granules were observed in group B and group C and overall coated layer appeared in regular and smooth form. 2. Before repeated closing and opening, The coated surface showed bigger and thicker size of coated granules in Group C than Group B. 3. After repeated closing and opening, abrasion and deformation of abutment screw surface was observed in Group A and Group B. Exfoliation phenomenon was observed in Group B. 4. Group A showed biggest range of decrease when the weight changes of abutment screws were measured before and after repeated closing and opening. Group C showed less weight changes than Group B but there was no statistical difference between two groups. 5. Group B and Group C showed higher average detorque force than Group A and there was statistical difference. 6. Group A showed more prominent decrease tendency of average detorque force than Group B and Group C. Conclusion: Coated abutment screws with WC/C or TiN did not show prominent surface changes than uncoated titanium abutment screws even though they were repeatedly used. And they showed excellent resistance against friction and high detorque force. Thus it is considered that adaptation of WC/C or TiN coating on abutment screws will improve the screw loosening problem.