• Title/Summary/Keyword: Titanium Alloy Powder

Search Result 54, Processing Time 0.031 seconds

Correlation of Sintering Parameters with Density and Hardness of Nano-sized Titanium Nitride reinforced Titanium Alloys using Neural Networks

  • Maurya, A.K.;Narayana, P.L;Kim, Hong In;Reddy, N.S.
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.365-372
    • /
    • 2020
  • Predicting the quality of materials after they are subjected to plasma sintering is a challenging task because of the non-linear relationships between the process variables and mechanical properties. Furthermore, the variables governing the sintering process affect the microstructure and the mechanical properties of the final product. Therefore, an artificial neural network modeling was carried out to correlate the parameters of the spark plasma sintering process with the densification and hardness values of Ti-6Al-4V alloys dispersed with nano-sized TiN particles. The relative density (%), effective density (g/㎤), and hardness (HV) were estimated as functions of sintering temperature (℃), time (min), and composition (change in % TiN). A total of 20 datasets were collected from the open literature to develop the model. The high-level accuracy in model predictions (>80%) discloses the complex relationships among the sintering process variables, product quality, and mechanical performance. Further, the effect of sintering temperature, time, and TiN percentage on the density and hardness values were quantitatively estimated with the help of the developed model.

New Material and Processing Issues for High Quality Parts by Micro-MIM

  • Rota, A.;Imgrund, Ph.;Haack, J.;Petzoldt, F.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.34-35
    • /
    • 2006
  • The development of Micro MIM as a new manufacturing process for metallic micro parts made of advanced functional materials has been the subject of considerable research over the last years. This paper addresses important quality aspects on processing of new materials by Micro-MIM. Three examples of new functional materials that can be processed are reviewed in this paper. The first example is two-component-Micro-MIM to obtain multi-functional devices. A micro positioning encoder consisting of a magnetic / non-magnetic material combination is presented. The second issue is series production of the replicate of the smallest human bone in the ear (stapes) from Titanium as an example of medical application. Quality assurance and reproducibility in terms of injection moulding parameters are addressed. In the third part, first results on the processing of the shape memory alloy NiTi by Micro-MIM are presented. Potential applications include biocompatible devices and transportation, for example automotive and aerospace. Processing routes and initial microstructures obtained are discussed.

  • PDF

The Characteristics of Surface Roughness when Micro Blasting of Titanium Alloy with Spiral Movement (티타늄합금의 나선운동 미세입자 분사가공 시 표면거칠기 특성)

  • Kim, Sang-Hyun;Wang, Duck-Hyun;Lee, Se-Han
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.125-130
    • /
    • 2012
  • When conducting a powder blasting to a spinning cylindrical workpiece in the codition of 0.76~1.5(mm) in nozzle size, 1~5(atm) in working pressure, and 40~100(mm) in stand off distance, the value of surface roughness becomes under $0.283{\mu}m$, which is not enough to expand a bonding area. In the case of horizontal transfer blasting with 0.76mm of nozzle size, 100mm of stand off distance, and 2~5atm of working pressure, $0.5{\sim}0.7{\mu}m$ of surface roughness has achieved regardless of feed rate.

Material Characteristics of Ti-6Al-4V Alloy Manufactured by Electron Beam Melting for Orthopedic Implants (전자빔 용해 방법으로 제조된 정형외과 임플란트용 Ti-6Al-4V 합금의 재료 특성 분석)

  • Gang, Gwan-Su;Jeong, Yong-Hun;Jang, Tae-Gon;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;U, Su-Heon;Park, Tae-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.25-25
    • /
    • 2018
  • Electron beam melting (EBM) is one of powder based additive manufacturing technology used to produce parts for high geometrical complexity and directly with three-dimensional computer aided design (CAD) model. It is kind of the most promising methods with additive manufacturing for a wide range of medical applications, such as orthopedic, dental implant, and etc. This research has been investigated the microstructure and mechanical properties of as fabricated and hot iso-static pressing (HIP) processed specimens, which are made by an Arcam A1 EBM system. The Ti-6Al-4V titanium alloy powder was used as a material for the 3 dimensional printing specimens. Mechanical properties were conducted with EBM manufacturing and computer numerical control (CNC) machining specimens, respectively. Surface morphological analysis was conducted by scanning electron microscopy (SEM) for their surface, dissected plan, and fractured surface after tensile test. The mechanical properties were included tensile stress-strain and nano-indentation test as a analysis level between nano and macro. As following highlighted results, the stress-strain curves on elastic region were almost similar between as fabricated and HIP processed while the ductile (plastic deformed region) properties were higher with HIP than that of as fabricated processed.

  • PDF

Fabrication and Biomaterial Characteristics of HA added Ti-Nb-HA Composite Fabricated by Rapid Sintering (급속소결에 의한 HA가 첨가된 Ti-Nb-HA 복합재료의 제조 및 생체재료 특성)

  • Woo, Kee Do;Kim, Sang Hyck;Kim, Ji Young;Park, Sang Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.86-91
    • /
    • 2012
  • Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent biocompatibility, corrosion resistance and mechanical properties. However, V-free titanium alloys such as Ti-6%Al-7%Nb and Ti-5%Al-2.5%Fe have recently been developed because of the toxicity of V. Hydroxyapatite (HA) is used as a coating material on Ti or Ti biomaterials due to its good biocompatibility. However, HA coated on Ti alloy causes a problem for tissue by peeling off during usage. Therefore, such peeling off during long time usage can be suppressed by adding HA in Ti or Ti alloy composites. The aim of this study was to manufacture an ultra fine grained (UFG) Ti-Nb-HA bulk alloy, which is usually difficult to fabricate using melting and casting technology, by rapid sintering process using high energy mechanical milled (HEMM) powder.

Microstructure and Hardness of Titanium Aluminide/Carbide Composite Coatings Prepared by Reactive Spray Method (반응성 스프레이방법으로 제작한 티타늄 알루미나이드/탄화물 복합박막의 미세조직과 경도)

  • Han, Chang-Suk;Jin, Sung-Yooun
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.350-358
    • /
    • 2020
  • A variety of composite powders having different aluminum and carbon contents are prepared using various organic solvents having different amounts of carbon atoms in unit volume as ball milling agents for titanium and aluminum ball milling. The effects of substrate temperature and post-heat treatment on the texture and hardness of the coating are investigated by spraying with this reduced pressure plasma spray. The aluminum part of the composite powder evaporates during spraying, so that the film aluminum content is 30.9 mass%~37.4 mass% and the carbon content is 0.64 mass%~1.69 mass%. The main constituent phase of the coating formed on the water-cooled substrate is a non-planar α2 phase, obtained by supersaturated carbon regardless of the alloy composition. When these films are heat-treated at 1123 K, the main constituent phase becomes γ phase, and fine Ti2AlC precipitates to increase the film hardness. However, when heat treatment is performed at a higher temperature, the hardness is lowered. The main constitutional phase of the coating formed on the preheated substrate is an equilibrium gamma phase, and fine Ti2AlC precipitates. The hardness of this coating is much higher than the hardness of the coating in the sprayed state formed on the water-cooled substrate. When hot pressing is applied to the coating, the porosity decreases but hardness also decreases because Ti2AlC grows. The amount of Ti2AlC in the hot-pressed film is 4.9 vol% to 15.3 vol%, depending on the carbon content of the film.

Photoelectrochemical Behaviour of Oxide Films on Ti-Ga2O3 Alloy (Ti-Ga 합금 위에 형성된 산화티타늄 피막의 광 전기분해 특성에 관한 연구)

  • Park, Seong-Yong;Cho, Byung-Won;Yun, Kyung-Suk;Lee, Eung-Cho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.3 no.2
    • /
    • pp.25-33
    • /
    • 1992
  • With the aim to obtain $TiO_2$ films with an increased photorespones and absorbance in the visible region of the solar spectrum, the direct oxidation of titanium alloys were performed. In this study, $Ti-Ga_2O_3$ alloy was prepared by mixing, pressing and arc melting of appropriate amounts of titanium and $Ga_2O_3$ powder. Electrochemical measurements were performed in three electrode cell using electrolyte of 1M NaOH solution. The oxide films on $Ti-Ga_2O_3$ alloy was composed of $Ti_2O$, TiO, $TiO_2$, $Ga_2TiO_5$. The free energy efficiency (${\eta}e$) of $Ti-Ga_2O_3$ oxide films had 0.8~1.3 % and were increased with the increase of $Ga_2O_3$ content up to 10wt %. The onset potential ($V_{on}$) had -0.8V~0.9V ranges and were shifted to anodic direction with the increase of $Ga_2O_3$ content. The spectral response of Ti-$Ga_2O_3$ oxides were similar to the response of the $TiO_2$ and their $E_g$ were observed to 2.90~3.0eV. Variations of onset potential($V_{on}$) associated with electrolyte pH were -59mV/pH. This probably reflects the nature of the bonding of $OH^-$ ion to the $TiO_2$ surface, a common phenomena in the transition-metal oxides.

  • PDF

Effect of Milling Time on Pore Size and Distribution of Ti-Nb-Zr Biomaterials with Space Holder Consolidated by Spark Plasma Sintering

  • Kim, Dong-Gun;Woo, Kee-Do;Kang, Dong-Soo;Lee, Tack
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.111-115
    • /
    • 2014
  • Titanium and its alloys are useful for implant materials. In this study, porous Ti-Nb-Zr biomaterials were successfully synthesized by powder metallurgy using a $NH_4HCO_3$ as space holder and $TiH_2$ as foaming agent. Consolidation of powder was accomplished by spark plasma sintering process(SPS) at $850^{\circ}C$ under 30 MPa condition. The effect of high energy milling time on pore size and distribution in Ti-Nb-Zr alloys with space holder($NH_4HCO_3$) was investigated by optical microscope(OM), scanning electron microscope(SEM) & energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD). Microstructure observation revealed that, a lot of pores were uniformly distributed in the Ti-Nb-Zr alloys as size of about $30-100{\mu}m$ using mixed powder and milled powders. In addition, the pore ratio was found to be about 5-20% by image analysis, using an image analyzer(Image Pro Plus). Furthermore, the physical properties of specimens were improved with increasing milling time as results of hardness, relative density, compressive strength and Young's modulus. Particularly Young's modulus of the sintered alloy using 4h milled powder reached 52 GPa which is similar to bone elastic modulus.

High alloyed new stainless steel shielding material for gamma and fast neutron radiation

  • Aygun, Bunyamin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.647-653
    • /
    • 2020
  • Stainless steel is used commonly in nuclear applications for shielding radiation, so in this study, three different types of new stainless steel samples were designed and developed. New stainless steel compound ratios were determined by using Monte Carlo Simulation program Geant 4 code. In the sample production, iron (Fe), nickel (Ni), chromium (Cr), silicium (Si), sulphur (S), carbon (C), molybdenum (Mo), manganese (Mn), wolfram (W), rhenium (Re), titanium (Ti) and vanadium (V), powder materials were used with powder metallurgy method. Total macroscopic cross sections, mean free path and transmission number were calculated for the fast neutron radiation shielding by using (Geant 4) code. In addition to neutron shielding, the gamma absorption parameters such as mass attenuation coefficients (MACs) and half value layer (HVL) were calculated using Win-XCOM software. Sulfuric acid abrasion and compressive strength tests were carried out and all samples showed good resistance to acid wear and pressure force. The neutron equivalent dose was measured using an average 4.5 MeV energy fast neutron source. Results were compared to 316LN type stainless steel, which commonly used in shielding radiation. New stainless steel samples were found to absorb neutron better than 316LN stainless steel at both low and high temperatures.

Effect of post heat treatment on fatigue properties of EBM 3D-printed Ti-6Al-4V alloy (분말 3D 프린팅된 Ti-6Al-4V 합금의 피로특성에 미치는 후열처리의 영향)

  • Choi, Young-Sin;Jang, Ji-Hoon;Kim, Gun-Hee;Lee, Chang-Woo;Kim, Hwi-Jun;Lee, Dong-Geun
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.340-345
    • /
    • 2018
  • Additive manufacturing by electron beam melting is an affordable process for fabricating near net shaped parts of titanium and its alloys. 3D additive-manufactured parts have various kinds of voids, lack of fusion, etc., and they may affect crack initiation and propagation. Post process is necessary to eliminate or minimize these defects. Hot isostatic pressing (HIP) is the main method, which is expensive. The objective of this paper is to achieve an optimum and simple post heat treatment process without the HIP process. Various post heat treatments are conducted for the 3D-printed Ti-6Al-4V specimen below and above the beta transus temperature ($996^{\circ}C$). The as-fabricated EBM Ti-6Al-4V alloy has an ${\alpha}^{\prime}$-martensite structure and transforms into the ${\alpha}+{\beta}$ duplex phase during the post heat treatment. The fatigue strength of the as-fabricated specimen is 400 MPa. The post heat treatment at $1000^{\circ}C/30min/AC$ increases the fatigue strength to 420 MPa. By post heat treatment, the interior pore size and the pore volume fraction are reduced and this can increase the fatigue limit.