• 제목/요약/키워드: Titanium

검색결과 3,442건 처리시간 0.028초

마이크로 연마입자 분사를 이용한 티타늄합금의 표면처리에 관한 연구 (A study on the surface treatment of titanium alloy by micro abrasive blaster)

  • 김성원;왕덕현;김원일
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.20-27
    • /
    • 2009
  • The characteristics of titanium alloy as a relatively advanced material is low density, avirulent and, superior corrosive resistant, therefore the use of titanium alloy is increasing lately in aerospace and mechanical technologies, precision machinery, electronics industry, petro-chemical industries and biomedical areas. In these days, the titanium alloy product is required various surface qualities of not only smooth surface but also rough surface depending on usages. The purpose of this experimental research is to find the optimum surface roughness of titanium alloy of Ti-6Al-4V, by micro abrasive blasting as depending variable conditions of working pressure, nozzle size, working time, stand of distance and power particle size.

  • PDF

Effect of Titanium Ion and Resistance Encoding Plasmid of Pseudomonas aeruginosa ATCC 10145

  • Park Sung-Min;Kim Hyun-Soo;Yu Tae-Shick
    • Journal of Microbiology
    • /
    • 제44권3호
    • /
    • pp.255-262
    • /
    • 2006
  • Titanium and its alloys are technically superior and cost-effective materials, with a wide variety of aerospace, industrial, marine, and commercial applications. In this study, the effects of titanium ions on bacterial growth were evaluated. Six strains of bacteria known to be resistant to both metal ions and antibiotics were used in this study. Two strains, Escherichia coli ATCC 15489, and Pseudomonas aeruginosa ATCC 10145, proved to be resistant to titanium ions. Plasmid-cured p. aeruginosa resulted in the loss of one or move resistance markers, indicating plasmid-encoded resistance. The plasmid profile of p. aeruginosa revealed the presence of a 23-kb plasmid. The plasmid was isolated and transformed into $DH5{\alpha}$. Interestingly, the untransformed $DH5{\alpha}$ did not grow in 300 mg/l titanium ions, but the transformed $DH5{\alpha}$ grew quite well under such conditions. The survival rate of the transformed $DH5{\alpha}$ also increased more than 3-fold compared to that of untransformed $DH5{\alpha}$.

Extrusion of CP Grade Titanium Powders Eliminating the need for Hot Pre-compaction via Hot Isostatic Pressing

  • Wilson, Robert;Stone, Nigel;Gibson, Mark
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1273-1274
    • /
    • 2006
  • Chemically pure, hydride/dehydride titanium powders were cold pre-compacted then extruded at $850^{\circ}C$ and $\sim450MPa$ under argon. The extrusions were 100% dense with a narrow band of surface porosity and equiaxed microstructure of similar magnitude to the starting material. The tensile properties of the bars were better than conventionally extruded CP titanium bar product. Outcomes from this study have assisted in the identification of a number of key characteristics important to the extrusion of titanium from pre-compacted CP titanium powders, allowing the elimination of canning and hot isostatic pressing (HIPping) of billets prior to extrusion as per conventional PM processes.

  • PDF

In vitro에서 titanium이 구강미생물에 미치는 영향 (In vitro effects of titanium on oral microorganism)

  • 이화식;배봉진;김정
    • 대한치과기공학회지
    • /
    • 제21권1호
    • /
    • pp.145-151
    • /
    • 1999
  • Titanium(Ti) alloys has been mostly concerned with biocompatibility, corrosion resistance, and biofunctionality. However, very little is known, about the biological effects of titanium on microorganism and in particular on the oral flora. So, the effect of titanium on the in vitro growth of oral microorganism forming dental caries was studied under either aerobic or anaerobic condition. In this study, the mostly bacterial species commonly found in dental plaque or gingival sulcus grew well in an aqueous medium containing $100{\mu}g/ml$ of titanium standard solution.

  • PDF

Ammonia decomposition over titanium carbides

  • Choi, Jeong-Gil
    • 한국결정성장학회지
    • /
    • 제22권6호
    • /
    • pp.269-273
    • /
    • 2012
  • Ammonia decomposition over titanium carbides were investigated using eight different samples which have been synthesized by TPR (temperature-programmed reduction) method of titanium oxide ($TiO_2$) with pure $CH_4$. The resulting materials which were synthesized using wo different heating rates and space velocity exhibited the different surface areas. These results indicated that the structural properties of these materials have been related to heating rates and space velocity employed. The titanium carbides prepared in this study proved to be active for ammonia decomposition, and the activity changed with the particle size/surface area. These showed the relationship between ammonia decomposition activity and the different active species. Compared to molybdenum carbide, the titanium carbides were one order of magnitude less active, suggesting the correlation between the activity difference and the degree of electron transfer between metals and carbon in metal carbides.

다공성 활성탄의 표면 개질 및 이산화티탄 고정 (Surface Modification and Anchoring Titanium Dioxide on Mesoporous Activated Carbons)

  • 주창식;박흥재;정갑섭
    • 한국환경과학회지
    • /
    • 제12권9호
    • /
    • pp.1005-1010
    • /
    • 2003
  • For the purpose of surveying any possibility of anchoring titanium dioxide on activated carbons to promote their activities as catalysts and/or adsorbents, two activated carbons were oxidized with ammonium peroxydisulfate and followed by anchoring titanium dioxide. The anchoring of titanium dioxide on the oxidized activated carbons were performed via the adsorption of tetrabutyltitanate, hydrolysis with deionized water, and calcination. The effect of oxidizing and anchoring treatment on the surface element composition, surface area, and pore texture were analyzed by XPS, BET and TPD. The oxidation of activated carbons with ammonium peroxydisulfate introduced carboxyl groups on the surface of activated carbons and these carboxyl groups promoted the anchoring of titanium oxide on the activated carbons. However, the treatments affected the surface area and the porosity of activated carbons.

Development of Titanium Powder Injection Molding: Rheological and Thermal Analyses

  • Wu, Yunxin;Park, Seong-Jin;Heaney, Donald F.;Zou, Xin;Gai, Guosheng;Kwon, Young-Sam;German, Randall M.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.227-228
    • /
    • 2006
  • Powder injection molding (PIM) is a suitable technology for the fabrication of complex shape titanium and its alloys, and has a great potential in many applications. This paper dealt with the injection molding of hydride dehydrogenization (HDH) titanium powder, spheroidized HDH titanium powder and gas atomized titanium powder. Rheological and thermalgravimetric behaviors were compared between the feedstocks of the three powders, and a tentative application of Ti PIM to eye frame temple and bridge was briefed.

  • PDF

유무기 하이브리드 티타늄 착화합물을 이용한 티타니아의 제조 방법 및 성장 거동에 대한 연구 (A Study on the Preparation and Growth Mechanism of Titanium Dioxide using Organic-Inorganic Hybrid Titanium Complex)

  • 강유빈;최진주;권남훈;김대근;이근재
    • 한국분말재료학회지
    • /
    • 제26권6호
    • /
    • pp.487-492
    • /
    • 2019
  • Titanium dioxide (TiO2) is a typical inorganic material that has an excellent photocatalytic property and a high refractive index. It is used in water/air purifiers, solar cells, white pigments, refractory materials, semiconductors, etc.; its demand is continuously increasing. In this study, anatase and rutile phase titanium dioxide is prepared using hydroxyl and carboxyl; the titanium complex and its mechanism are investigated. As a result of analyzing the phase transition characteristics by a heat treatment temperature using a titanium complex having a hydroxyl group and a carboxyl group, it is confirmed that the material properties were different from each other and that the anatase and rutile phase contents can be controlled. The titanium complexes prepared in this study show different characteristics from the titania-formation temperatures of the known anatase and rutile phases. It is inferred that this is due to the change of electrostatic adsorption behavior due to the complexing function of the oxygen sharing point, which crystals of the TiO6 structure share.

Influence of the connection design and titanium grades of the implant complex on resistance under static loading

  • Park, Su-Jung;Lee, Suk-Won;Leesungbok, Richard;Ahn, Su-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권5호
    • /
    • pp.388-395
    • /
    • 2016
  • PURPOSE. The purpose of this study was to evaluate the resistance to deformation under static overloading by measuring yield and fracture strength, and to analyze the failure characteristics of implant assemblies made of different titanium grades and connections. MATERIALS AND METHODS. Six groups of implant assemblies were fabricated according to ISO 14801 (n=10). These consisted of the combinations of 3 platform connections (external, internal, and morse tapered) and 2 materials (titanium grade 2 and titanium grade 4). Yield strength and fracture strength were evaluated with a computer-controlled Universal Testing Machine, and failed implant assemblies were classified and analyzed by optical microscopy. The data were analyzed using the One-way analysis of variance (ANOVA) and Student's t-test with the level of significance at P=.05. RESULTS. The group $IT4_S$ had the significantly highest values and group IT2 the lowest, for both yield strength and fracture strength. Groups $IT4_N$ and ET4 had similar yield and fracture strengths despite having different connection designs. Group MT2 and group IT2 had significant differences in yield and fracture strength although they were made by the same material as titanium grade 2. The implant system of the similar fixture-abutment interfaces and the same materials showed the similar characteristics of deformation. CONCLUSION. A longer internal connection and titanium grade 4 of the implant system is advantageous for static overloading condition. However, it is not only the connection design that affects the stability. The strength of the titanium grade as material is also important since it affects the implant stability. When using the implant system made of titanium grade 2, a larger diameter fixture should be selected in order to provide enough strength to withstand overloading.