• Title/Summary/Keyword: Tissue-specific promoter

Search Result 115, Processing Time 0.023 seconds

Characterization of the TAK1 gene in Apis cerana cerana(AccTAK1) and its involvement in the regulation of tissue-specific development

  • Meng, Fei;Kang, Mingjiang;Liu, Li;Luo, Lu;Xu, Baohua;Guo, Xingqi
    • BMB Reports
    • /
    • v.44 no.3
    • /
    • pp.187-192
    • /
    • 2011
  • TGF-$\beta$ activated kinase-1 (TAK1) plays a pivotal role in developmental processes in many species. Previous research has mainly focused on the function of TAK1 in model organisms, and little is known about the function of TAK1 in hymenoptera insects. Here, we isolated and characterized the TAK1 gene from Apis cerana cerana. Promoter analysis of AccTAK1 revealed the presence of transcription factor binding sites related to early development. Real-time quantitative PCR and immunohistochemistry experiments revealed that AccTAK1 was expressed at high levels in fourth instar larvae, primarily in the abdomen, in the intestinal wall cells of the midgut and in the secretory cells of the salivary glands. In addition, AccTAK1 expression in fourth instar larvae could be dramatically induced by treatment with pesticides and organic solvents. These observations suggest that AccTAK1 may be involved in the regulation of early development in the larval salivary gland and midgut.

Effect of HRE and Bcl-2 on the Production of Plasminogen Activator in CHO cells

  • Bae, Geun-Won;No, Jeong-Gwon;Lee, Gyu-Min;Kim, Ik-Yeong;Kim, Ik-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.261-264
    • /
    • 2002
  • CHO (Chinese hamster ovary) cells were transfected with plasmids containing both cis-acting HRE (hypoxia response element) and CMV-promoter that controls tissue-type plasminogen activator (t-PA). CHO cells with HRE produced 16.2 fold higher t-PA concentration than CHO cells without HRE. It was noted that hypoxia strongly induced CHO cell apoptosis. which resulted in decrease of cell viability and protein production. In this study. by introducing Bcl-2, anti-apoptotic gene, we tried to recover cell viability and increase the protein production. When batch culture of both control cells without transfection of Bcl-2 and cells transfected with Bcl-2 were performed in the absence of CoCl ι hypoxia mimic condition. the cells with Bcl-2 were effected specific cell growth rates, maximum cell density. Immunoblotting assay showed Bcl-2 was recombinant with HRE dependent t- P A expression cassette, and their expression level was depended on hypoxia. By introducing Bcl-2, both cell viability and maximum cell density could be increased.

  • PDF

Differential Expression of a Chimeric nos-npt II Gene in 9 Years Old Hybrid Poplars (Populus koreana x P. nigra)

  • Noh, Eun Woon;Lee, Jae Soon;Choi, Young Im;Lee, Hyo Shin;Bae, Eun Kyung;Lee, Ji Hee
    • Journal of Plant Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.15-19
    • /
    • 2004
  • The expression of a chimeric transgene (nos-npt II) has been examined in 9 years old transgenic poplars (Populus koreana x P. nigra) growing in a nursery. The expression of the gene in twenty six independentely transformed plants were examined by 1) enzyme (NPT II) assay, 2) RT-PCR, and 3) resistance to kanamycin. High NPT II activities in young leaves of all the transformed plants were found even without a selection pressure for antibiotics for 9 years. However, the activity varied with the positions of leaves in the stem in that young leaves showed higher activity than did mature tissues. When leaf segments were cultured in the presence of 150 mg/l kanamycin, only those from young leaves produced vigorously growing callus. However, as in the case of NPTII assay, the leaf segments from mature leaves did not form callus well on the media. RT-PCR with nptII specific primers also showed that amplification products were observed only when RNAs from young tissues were used. The total RNA gel showed that while RNA in young leaves are relatively stable and in a large quantity, those in old leaves were mostly degraded. All the above results suggest that the gene is transcriptionally active only in young tissue even though it is attached to a constituitive promoter. Therefore, the expression of foreign gene in poplar plants seemed to be affected by the metabolic state of the cells and thus vary greatly with the developmental stages and the age of tissue.

Analysis of biological functions of rpt-1 in human cells with exposure to environmental pollutants (환경오염물질 폭로에 따른 인체세포에서의 rpt-1 발현 및 역할의 분석)

  • 김선영;양재호
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.164-168
    • /
    • 2001
  • Abel et al. in Germany discovered a new dioxin-responsive gene, which has later been identified as rpt-1 (regulatory protein T-lymphocyte 1). While it is speculated that rpt-1 may play a role in signal transduction and carcinogenesis, its roles and functions remain unknown. The present study attempted to analyze functions of rpt-1 in human epithelial cells following the xenobiotic exposures. While German counterpart analyzed expressionn of rpt-1 in spleen and thymus cells from mouse and rat and characterizes molecular properties of the gene, our work mainly focused on analyzing function of rpt-1 in human skin cells. Expression of rpt-1 in human cells were analyzed by western and northern blot RT-PCR analysis. Expression of rpt-1 as well as Staf-50 in human cells with or without exposure to environmental pollutants were also analyzed by northern blot analysis, since Staf-50 is homologous with rpt-1 and found in human cells. To help study roles of rpt-1 in human cell system, retroviral vector system carrying rpt-1 gene under the CMV promoter were constructed and transfected. Cells overexpressing the gene after the transfection showed an increase of cell density and soft agar colony formations, as compared to the control cells, suggesting that rpt-1 may play a certain role in the transformation processes of human cells. While the expression of rpt-1 in spleen and thymus is known to be strong in the laboratory animals, both the basal and TCDD-induced expression of rpt-1 in the current cellular system remained insignificant. It is speculated that the expression pattern of rpt-1 may be tissue- and species-specific. The present study demonstrated a strong expression of rpt-1 protein in the brain of SD rat model. Since there is no previous report on the expression of rpt-1 in the brain tissue, the result may play a significant role in understanding dioxin-induced neurotoxicities in the future. The present study provides an opportunity to understand a role of rpt-1 in human cell system and suggest a possible lead and basis for the future study of dioxin-induced neurotoxicities.

  • PDF

Characteristics of Structure and Expression Pattern of ADSF/resistin Gene in Korean Native Cattle

  • Kang, Hye Kyeong;Park, Ji Ae;Seo, Kang Seok;Kim, Sang Hoon;Choi, Yun Jai;Moon, Yang Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.329-334
    • /
    • 2006
  • Adipocyte-specific secretory factor (ADSF)/resistin, a hormone, is a small cysteine-rich protein secreted from adipose tissue and has been implicated in modulating adipogenesis in humans and rodents. The objective of this study was to clone a gene encoding ADSF/resistin and to characterize its function in Korean Native Cattle (Hanwoo). The coding sequence was 330 base pairs and it encoded a protein of 109 amino acids. An NCBI BLAST-search revealed the cloned cDNA fragment shared significant homology (82%) with the cDNA encoding the human ADSF/resistin. The nucleotide sequence homology of the Hanwoo sequence was 73% and 64% for the rat and mouse, respectively. A 654 bp ADSF/resistin gene promoter was cloned and putative binding sites of transcription factors were identified. Tissue distribution of ADSF mRNA was examined in liver, skeletal muscles (tenderloin, biceps femoris), subcutaneous fat, and perirenal fat by RT-PCR. ADSF mRNAs were detected in fat tissues but not in liver and muscles, suggesting that ADSF/resistin expression may be induced during adipogenesis. Although, the physiological function of ADSF/resistin in the cow remains to be determined, these data indicate ADSF is related to the adipocyte phenotype and may have a possibly regulatory role in adipocyte function.

Expression Patterns of the Differentially Expressed Genes During Growth Stages of Hanwoo(Korean Cattle) (한우 성장단계 특이발현 유전자의 발현양상 분석)

  • Jang, Y.S.;Yoon, D.H.;Kim, T.H.;Cheong, I.C.;Jo, J.K.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.677-684
    • /
    • 2002
  • We have investigated the expression patterns of candidates for growth stage specifically expressed genes. The expression patterns of the EPV20, aldolase A, Translationally Controlled Tumor Protein (TCTP) and Adipocyte Differentiation Related Protein (ADRP) were examined by semiquantitative RT-PCR and northern blot analysis in skeletal muscle tissues of Hanwoo, especially in the longissimus dorsi at various growth stages. The EPV20 mRNA was expressed in longissimus dorsi tissue of Hanwoo, but there was no difference of expression levels during growth stages. Though the aldolase A gene was reported to be muscle-specific and regulated at developmental stages, the expression levels of aldolase A mRNA in the longissimus dorsi tissues showed little differences at various growth stages. The expression levels of TCTP which was reported as growth-related protein regulated at translation step were gradually increased during growth of Hanwoo. The expression levels of ADRP mRNA were rapidly increased at 24-month-old longissimus dorsi tissue of Hanwoo, and decreased at 30-month-old. Our data suggest that the ADRP gene show as growth-stage dependent expression and is related to fat deposition within muscular tissue.

Loss of Expression and Aberrant Methylation of the CDH1 (E-cadherin) Gene in Breast Cancer Patients from Kashmir

  • Asiaf, Asia;Ahmad, Shiekh Tanveer;Aziz, Sheikh Aejaz;Malik, Ajaz Ahmad;Rasool, Zubaida;Masood, Akbar;Zargar, Mohammad Afzal
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6397-6403
    • /
    • 2014
  • Background: Aberrant promoter hypermethylation has been recognized in human breast carcinogenesis as a frequent molecular alteration associated with the loss of expression of a number of key regulatory genes and may serve as a biomarker. The E-cadherin gene (CDH1), mapping at chromosome 16q22, is an intercellular adhesion molecule in epithelial cells, which plays an important role in establishing and maintaining intercellular connections. The aim of our study was to assess the methylation pattern of CDH1 and to correlate it with the expression of E-cadherin, clinicopathological parameters and hormone receptor status in breast cancer patients of Kashmir. Materials and Methods: Methylation specific PCR (MSP) was used to determine the methylation status of CDH1 in 128 invasive ductal carcinomas (IDCs) paired with the corresponding normal tissue samples. Immunohistochemistry was used to study the expression of E-cadherin, ER and PR. Results: CDH1 hypermethylation was detected in 57.8% of cases and 14.8% of normal adjacent controls. Reduced levels of E-cadherin protein were observed in 71.9% of our samples. Loss of E-cadherin expression was significantly associated with the CDH1 promoter region methylation (p<0.05, OR=3.48, CI: 1.55-7.79). Hypermethylation of CDH1 was significantly associated with age at diagnosis (p=0.030), tumor size (p=0.008), tumor grade (p=0.024) and rate of node positivity or metastasis (p=0.043). Conclusions: Our preliminary findings suggest that abnormal CDH1 methylation occurs in high frequencies in infiltrating breast cancers associated with a decrease in E-cadherin expression. We found significant differences in tumor-related CDH1 gene methylation patterns relevant to tumor grade, tumor size, nodal involvement and age at diagnosis of breast tumors, which could be extended in future to provide diagnostic and prognostic information.

Transcriptional Regulation of Genes by Enhancer RNAs (인핸서 RNA에 의한 유전자 전사 조절)

  • Kim, Yea Woon;Kim, AeRi
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.140-145
    • /
    • 2016
  • Genes in multicellular organisms are transcribed in development, differentiation, or tissue-specific manners. The transcription of genes is activated by enhancers, which are transcription regulatory elements located at long distances from the genes. Recent studies have reported that noncoding RNAs are transcribed from active enhancers by RNA polymerase II (RNA Pol II); these are called enhancer RNAs (eRNAs). eRNAs are transcribed bi-directionally from the enhancer core, and are capped on the 5’ end but not spliced or polyadenylated on the 3’ end. The transcription of eRNAs requires the binding of transcription activators on the enhancer and associates positively with the transcription of the target gene. The transcriptional inhibition of eRNAs or the removal of eRNA transcripts results in the transcriptional repression of the coding gene. The transcriptional procedure of eRNAs causes enhancer- specific histone modifications, such as histone H3K4me1/2. eRNA transcripts directly interact with Mediator and Rad21, a cohesin subunit, generating a chromatin loop structure between the enhancer and the promoter of the target gene. The recruitment of RNA Pol II into the promoter and its elongation through the coding region are facilitated by eRNAs. Here, we will review the features of eRNAs, and discuss the mechanism of eRNA transcription and the roles of eRNAs in the transcriptional activation of target genes.

Hypermethylation of the Ras Association Domain Family 1A (RASSF1A) Gene in Gallbladder Cancer

  • Kee, Se Kook;Lee, Ji Yun;Kim, Mi Jin;Lee, Su Man;Jung, Young Won;Kim, Young Joo;Park, Jae Yong;Bae, Han Ik;Hong, Hae Sook;Yun, Young Kook;Kim, Sang Geol;Kim, Dong Sun
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.364-371
    • /
    • 2007
  • The tumor suppressor gene Ras association domain family 1A (RASSF1A) is highly methylated in a wide range of human sporadic tumors. The current study investigated the hypermethylation of RASSF1A, the expression of RASSF1A protein, and the correlation between these and the clinicopathological features of gallbladder (GB) cancer in Korean patients. Formalin-fixed, paraffin-embedded tumors and non-neoplastic GB tissues (22 carcinomas, 8 adenomas, 26 normal epithelia) were collected from patients who had undergone surgical resection. The methylation status of two regions of the RASSF1A CpG island was determined by methylation-specific PCR (MSP), and the expression of RASSF1A protein was examined by immunohistochemistry using tissue microarrays. The K-RAS mutation was analyzed by direct sequencing. Methylation of the RASSF1A promoter (region 1) was detected in 22.7% (5/22) of carcinomas, 12.5% (1/8) of adenomas, and 0% (0/26) of normal gallbladder epithelia (P = 0.025). Methylation of the first exon (region 2) was found in 36.4% (8/22) of carcinomas, 25.0% (2/8) of adenomas, and 8.0% (2/26) of normal gallbladder epithelia (P = 0.038). K-RAS mutations were present in 4.5% (1/22) of carcinomas and 25% (2/8) of adenomas. RASSF1A methylaton was not associated with clinicopathological factors or K-ras mutation. Reduction or loss of RASSF1A expression was observed in most methylated adenocarcinomas. Three RASSF1A-expressing human biliary tract cancer cell lines examined contained unmethylated promoters and exons 1. These results suggest that downregulation of RASSF1A expression by DNA hypermethylation may be involved in GB carcinogenesis.

Generation of a transgenic mouse model to study cranial suture development; Apert syndrome (두개봉합 발육 연구를 위한 형질변환 쥐의 개발 : 어퍼트 신드롬)

  • Lee, Kee-Joon;Ratisoontorn, Chootima;Baik, Hyoung-Seon;Park, Young-Chel;Park, Kwang-Kyun;Nah, Hyun-Duck
    • The korean journal of orthodontics
    • /
    • v.33 no.6 s.101
    • /
    • pp.485-497
    • /
    • 2003
  • The form and function of the craniofacial structure critically depend on genetic information. With recent advances in the molecular technology, genes that are important for normal growth and morphogenesis of the craniofacial skeleton are being rapidly uncovered, shaping up modem craniofacial biology. One of them is fibroblast growth factor receptor 2 (FGFR2). Specific point mutations in the. FGFR2 gene have been linked to Apert syndrome, which is characterized by premature closure of cranial sutures and craniofacial anomalies as well as limb deformities. To study pathogenic mechanisms underlying craniosynostosis phenotype of Apert syndrome, we used a transgenic approach; an FGFR2 minigene construct containing an Apert mutation (a point mutation that substitute proline at the position 253 to arginine; P253R) was introduced into fertilized mouse germ cells by DNA microinjection. The injected cells were then allowed to develop into transgenic mice. We used a bone-specific promoter (a DNA fragment from the type I collagen gene) to confine the expression of mutant FGFR2 gene to the bone tissue, and asked whether expression of mutant FGFR2 in bone is sufficient to cause the craniosynostosis phenotype in mice. Initial characterization of these mice shows prematurely closed cranial sutures with facial deformities expected from Apert patients. We also demonstrate that the transgene produces mutant FGFR2 protein with increased functional activities. Having this useful mouse model, we now can ask questions regarding the role of FGFR2 in normal and abnormal development of cranial bones and sutures.