• Title/Summary/Keyword: Tissue-specific promoter

Search Result 115, Processing Time 0.019 seconds

Secretion of Human Growth Hormone from Mammary Gland of Transgenic Mice (형질전환동물의 유선조직으로부터 인간 성장호르몬의 분비)

  • 구덕본;최강덕;정형민;이상민;이경광;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.4
    • /
    • pp.375-383
    • /
    • 1994
  • The human growth hormone (hGH) gene uder the control of the rat $\beta$-casein promoter gene was designed to produce transgenic mouse expressed hGH gene in only mammary gland. One hundred seventy two eggs microinjected were transferred to the oviducts of pseudopregnants and 43 offspring were delivered. By Southern blotting hybridization, 3 were transgenic with rat $\beta$-casein/hGH gene. The copy numbers of three transgenic founder were 1, 5, and 15, respectively. A radioimmunoassay was developed to quantitate the amount of expression of the hGH gene in mammary gland of transgenic mice. The amount of hGH was 13.3ng/ml in the lactating milk of one transgenic line, showing predominantly higher than 3.0ng/ml in milk of control mice. Therefore, our findings suggested that $\beta$-casein promoter may induce the tissue specific expression of structural gene.

  • PDF

Extracellular Superoxide Dismutase (EC-SOD) Transgenic Mice: Possible Animal Model for Various Skin Changes

  • Kim, Sung-Hyun;Kim, Myoung-Ok;Lee, Sang-Gyu;Ryoo, Zae-Young
    • Reproductive and Developmental Biology
    • /
    • v.30 no.4
    • /
    • pp.229-234
    • /
    • 2006
  • We have generated transgenic mice that expressed mouse extracellular superoxide dismutase (EC-SOD) in their skin. In particular, the expression plasmid DNA containing human keratin K14 promoter was used to direct the keratinocyte-specific transcription of the transgene. To compare intron-dependent and intron-independent gene expression, we constructed two vectors. The vector B, which contains the rabbit -globin intron 2, was not effective for mouse EC-SOD overexpression. The EC-SOD transcript was detected in the skin, as determined by Northern blot analysis. Furthermore, EC-SOD protein was detected in the skin tissue, as demonstrated by Western blot analysis. To evaluate the expression levels of EC-SOD in various tissues, we purified EC-SOD from the skin, lungs, brain, kidneys, livers, and spleen of transgenic mice and measured its activities. EC-SOD activities in the transgenic mice skin were approximately 7 fold higher than in wild-type mice. These results suggest that the mouse overexpressing vector not only induces keratinocyte-specific expression of EC-SOD, but also expresses successfully functional EC-SOD. Thus, these transgenic mice appeared to be useful for the expression of the EC-SOD gene and subsequent analysis of various skin changes, such as erythema, inflamation, photoaging, and skin tumors.

Methylation of the Mouse Dlx5 and Osx Gene Promoters Regulates Cell Type-specific Gene Expression

  • Lee, Ji Yun;Lee, Yu Mi;Kim, Mi Jin;Choi, Je Yong;Park, Eui Kyun;Kim, Shin Yoon;Lee, Sam Poong;Yang, Jae Sup;Kim, Dong Sun
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.182-188
    • /
    • 2006
  • Dlx5 and Osx are master regulatory proteins essential for initiating the cascade leading to osteoblast differentiation in mammals, but the mechanism of osteoblast-specific expression is not fully understood. DNA methylation at CpG sequences is involved in tissue and cell type-specific gene expression. We investigated the methylation status of Dlx5 and Osx in osteogenic and nonosteogenic cell lines by methylationspecific PCR (MSP). The CpG dinucleotides of the Dlx5 and Osx promoter regions were unmethylated in osteogenic cell lines transcribing these genes but methylated in nonosteogenic cell lines. Treatment of C2C12 cells with 5-AzadC induced dose- and timedependent expression of Dlx5 and Osx mRNA by demethylating the corresponding promoters. Furthermore the mRNAs for the osteoblast markers ALP and OC, which were undetectable in untreated cells, gradually increased after 5-AzadC treatment. In addition, BMP-2 stimulation induced Dlx5 expression by hypomethylating its promoter. These findings suggest that DNA methylation plays an important role in cell type-specific expression of Dlx5 and Osx.

Hypermethylation Status of E-Cadherin Gene in Gastric Cancer Patients in a High Incidence Area

  • Rashid, Haroon;Alam, Khursheed;Afroze, Dil;Yousuf, Adfar;Banday, Manzoor;Kawoosa, Fizalah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.6
    • /
    • pp.2757-2760
    • /
    • 2016
  • Gastric cancer (GC) is the fourth most prevalant cancer and the second leading cause of cancer-related mortality worldwide. As in other cancers gastric carcinogenesis is multifactorial involving environmental, genetic and epigenetic components. Epigenetic silencing due to hypermethylation of tumour suppressor genes is one of the key events in gastric carcinogenesis. This study was aimed to analyse the hypermethylation status of the E-Cadherin (CDH1) gene promoter in GCs in the ethnic Kashmiri population. In this study a total of 80 GC patients were recruited. Hypermethylation in tumour tissue was detected by methylation specific PCR (MS-PCR). Hypermethylation of CDH1 promoter was observed in 52 (65%) of gastric carcinoma cases which was significantly much higher than adjacent normal tissue [$p{\leq}0.0001$]. Further the frequency of CDH1 promoter methylation was significantly different with intestinal and diffuse types of gastric cancer [55.7% vs 82.1%; p<0.05]. Moreover females and cases with lymph node invasion had higher frequencies of CDH1 hypermethylation [$P{\leq}0.05$]. Thus the current data indicate a vital role of epigenetic alteration of CDH1 in the causation and development of gastric cancer, particularly of diffuse type, in our population.

Arabidopsis ACC Oxidase 1 Coordinated by Multiple Signals Mediates Ethylene Biosynthesis and Is Involved in Root Development

  • Park, Chan Ho;Roh, Jeehee;Youn, Ji-Hyun;Son, Seung-Hyun;Park, Ji Hye;Kim, Soon Young;Kim, Tae-Wuk;Kim, Seong-Ki
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.923-932
    • /
    • 2018
  • Ethylene regulates numerous aspects of plant growth and development. Multiple external and internal factors coordinate ethylene production in plant tissues. Transcriptional and post-translational regulations of ACC synthases (ACSs), which are key enzymes mediating a rate-limiting step in ethylene biosynthesis have been well characterized. However, the regulation and physiological roles of ACC oxidases (ACOs) that catalyze the final step of ethylene biosynthesis are largely unknown in Arabidopsis. Here, we show that Arabidopsis ACO1 exhibits a tissue-specific expression pattern that is regulated by multiple signals, and plays roles in the lateral root development in Arabidopsis. Histochemical analysis of the ACO1 promoter indicated that ACO1 expression was largely modulated by light and plant hormones in a tissue-specific manner. We demonstrated that point mutations in two E-box motifs on the ACO1 promoter reduce the light-regulated expression patterns of ACO1. The aco1-1 mutant showed reduced ethylene production in root tips compared to wild-type. In addition, aco1-1 displayed altered lateral root formation. Our results suggest that Arabidopsis ACO1 integrates various signals into the ethylene biosynthesis that is required for ACO1's intrinsic roles in root physiology.

Genomic Organization and Characterization of the Promoter Region of Bovine ADRP (Adipocyte Different Related Protein) Gene (소 Adipocyte Differentiation Related Protein (ADRP) 유전자의 Genomic Organization 및 Promoter Region의 특성 규명)

  • Jang, Y. S.;Yoon, D. H.;Kim, T. H.;Cheong, I. C.;Jo, J. K.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.169-182
    • /
    • 2003
  • To understand the structure and regulation of bovine ADRP (Adipocyte Differentiation Related Protein) gene, we have isolated the genomic clone of bovine ADRP and determined its sequence. A genomic Southern blot analysis confirmed that ADRP gene is present as a single copy in bovine genome and the ADRP gene spans 12 kb. Bovine ADRP genomic clone, HwADRPg-1, had 8 exons and 7 introns, and all splicing sites conformed to the GT/AG rule with the exon-intron boundaries located exactly. Analysis of the upstream 649 bp of the sequence of HwADRPg-1 showed that it does not contain any canonical TATAA boxes; however Sp1 binding sites and CAAT boxes are found. The promoter contained potential binding sites for AP-1, AP-2 and several putative transcription factor binding sites. The 5'-flanking region of HwADRPg-1 contained muscle specific transcription activator Myo G and C/EBP (CCAAT/ enhancer binding protein) recognizing site. These results suppose that the Myo G transcription activator regulate the transcription of bovine ADRP gene in muscular tissue and its transcriptional activity was triggered by degree of muscular development. Our results provide the necessary analysis for other flanking sequences are needed in addition to the proximal cis elements of this promoter to confer adipocyte differentiation-dependent or growth-dependent transcriptional control.

Analysis of the Glycinin Gy2 Promoter Activity in Soybean Protoplasts and Transgenic Tobacco Plants (대두 원형질체와 형질전환된 담배에서의 대두 glycinin 유전자 Gy2 promoter의 발현조절 기작)

  • Kim, Soo-Jung;Lee, Jee-Young;Kim, Chung-Ho;Choi, Yang-Do
    • Applied Biological Chemistry
    • /
    • v.38 no.5
    • /
    • pp.387-392
    • /
    • 1995
  • To study the regulatory expression mechanism of soybean glycinin gone, Gy2, the 5' upstream region of the gene was searched for the presence of putative regulatory elements by nucleotide sequencing. It revealed various kinds of regulatory sequence elements commonly found in plant storage protein genes. There were canonical promoter sequences, TATA box (TATAAT) and AGGA box (GAAT) which are common in the 5' upstream region of the plant genes. The embryo factor binding sequence, RY repeat, CACA sequences, ${\alpha}$-conglycinin enhancer-like sequences were also found. To delineate the function of these sequences, 5' upstream deletion mutants of Gy2 were prepared and fused to the ${\alpha}$-glucuronidase (GUS) gene. Each chimeric construct was transferred into soybean protoplasts for transient assay, which led to the identification of the sequences between -281 and -223, -170 and -122, of Gy2 promoter as negative regulatory elements, and the sequences between -223 and -170, -122 and -16 as positive regulatory elements. These results are consistent in transformed tobacco plants as well. The serially deleted promoter fragments fused to the GUS were transformed into Nicotiana tabacum by Agrobacterium tumefaciens using the binary vector system. GUS activity of Gy2 promoter deletion constructs was detected only in seeds but not in leaves with different levels of expression as in transient assay. These results suggest that the glycinin Gy2 promoter drives a tissue-specific expression in transgenic tobacco plants.

  • PDF

Radioiodine Therapy of Liver Cancer Cell Following Tissue Specific Sodium Iodide Symporter Gene Transfer and Assessment of Therapeutic Efficacy with Optical Imaging (조직 특이 발현 Sodium Iodide Symporter 유전자 이입에 의한 방사성옥소 간암세포 치료와 광학영상을 이용한 치료효과 평가)

  • Jang, Byoung-Kuk;Lee, You-La;Lee, Yong-Jin;Ahn, Sohn-Joo;Ryu, Min-Jung;Yoon, Sun-Mi;Lee, Sang-Woo;Yoo, Jeong-Soo;Cho, Je-Yeol;Lee, Jae-Tae;Ahn, Byeong-Cheol
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.5
    • /
    • pp.383-393
    • /
    • 2008
  • Purpose: Cancer specific killing can be achieved by therapeutic gene activated by cancer specific promotor. Expression of sodium iodide symporter (NIS) gene causes transportation and concentration of iodide into the cell, therefore radioiodine treatment after NIS gene transfer to cancer cell could be a form of radionuclide gene therapy. luciferase (Luc) gene transfected cancer cell can be monitored by in vivo optical imaging after D-luciferin injection. Aims of the study are to make vector with both therapeutic NIS gene driven by AFP promoter and reporter Luc gene driven by CMV promoter, to perform hepatocellular carcinoma specific radiodiodine gene therapy by the vector, and assessment of the therapy effect by optical imaging using luciferase expression. Materials and Methods: A Vector with AFP promoter driven NIS gene and CMV promoter driven Luc gene (AFP-NIS-CMV-Luc) was constructed. Liver cancer cell (HepG2, Huh-7) and non liver cancer cell (HCT-15) were transfected with the vector using liposome. Expression of the NIS gene at mRNA level was elucidated by RT-PCR. Radioiodide uptake, perchlorate blockade, and washout tests were performed and bioluminescence also measured by luminometer in these cells. In vitro clonogenic assay with 1-131 was performed. In vivo nuclear imaging was obtained with gamma camera after 1-131 intraperitoneal injection. Results: A Vector with AFP-NIS-CMV-Luc was constructed and successfully transfected into HepG2, Huh-7 and HCT-15 cells. HepG2 and Huh-7 cells with AFP-NIS-CMV-Luc gene showed higher iodide uptake than non transfected cells and the higher iodide uptake was totally blocked by addition of perchlorate. HCT-15 cell did not showed any change of iodide uptake by the gene transfection. Transfected cells had higher light output than control cells. In vitro clonogenic assay, transfected HepG2 and Huh-7 cells showed lower colony count than non transfected HepG2 and Huh-7 cells, but transfected HCT-15 cell did not showed any difference than non transfected HCT-15 cell. Number of Huh-7 cells with AFP-NIS-CMV-Luc gene transfection was positively correlated with radioidine accumulation and luciferase activity. In vivo nuclear imaging with 1-131 was successful in AFP-NIS-CMV-Luc gene transfected Huh-7 cell xenograft on nude mouse. Conclusion: A Vector with AFP promoter driven NIS and CMV promoter driven Luc gene was constructed. Transfection of the vector showed liver cancer cell specific enhancement of 1-131 cytotoxicity by AFP promoter, and the effect of the radioiodine therapy can be successfully assessed by non-invasive luminescence measurement.

Establishment of Early Verification Method for Introduction of the Binary Trans-activation System in Chinese Cabbage (Brassica rapa L. ssp. Pekinensis) (배추 작물에 이원적 전사유도 시스템 도입을 위한 조기 검증방법 확립)

  • Kim, Soo-Yun;Yu, Hee-Ju;Kim, Jeong-Ho;Cho, Myeong-Cheoul;Park, Mehea
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.95-102
    • /
    • 2013
  • Binary trans-activation (pOp/LhG4) system is one of the regulatory systems of transgene expression. The target gene expression is achieved by crossing the reporter plants with an activator in this system. In this study, we used the features of this system in Chinese cabbage as a way to protect genetic resources and new varieties. To establish pOp/LhG4 system in Chinese cabbage, we designed an activator (35SLhG41300), and reporter constructs (pOpGUSBart) and co-transformed using Agrobacterium. The transgenic plants were selected by antibiotics and the functional activity of pOp/LhG4 system was confirmed by GUS expression. To induce the tissue-specific function, we constructed pOp/LhG4 system (795LhGBart) using female tissue specific promoter (ProAt1g26795) of Arabidopsis. Co-transformed transgenic plants clearly showed tissue specific expression in Arabidopsis. The results suggest the possibility of the system's application of $F_1$ generation can be restricted by expressing the target gene to protect a new variety and genetic resource in Chinese cabbages.