DOI QR코드

DOI QR Code

Genomic Organization and Characterization of the Promoter Region of Bovine ADRP (Adipocyte Different Related Protein) Gene

소 Adipocyte Differentiation Related Protein (ADRP) 유전자의 Genomic Organization 및 Promoter Region의 특성 규명

  • Jang, Y. S. (National Livestock Research Institute, R.D.A.) ;
  • Yoon, D. H. (National Livestock Research Institute, R.D.A.) ;
  • Kim, T. H. (National Livestock Research Institute, R.D.A.) ;
  • Cheong, I. C. (National Livestock Research Institute, R.D.A.) ;
  • Jo, J. K. (Department of Animal Science, Kyungpook National University)
  • 장요순 (농촌진흥청 축산기술연구소) ;
  • 윤두학 (농촌진흥청 축산기술연구소) ;
  • 김태헌 (농촌진흥청 축산기술연구소) ;
  • 정일정 (농촌진흥청 축산기술연구소) ;
  • 조진기 (경북대학교 동물공학과)
  • Published : 2003.04.30

Abstract

To understand the structure and regulation of bovine ADRP (Adipocyte Differentiation Related Protein) gene, we have isolated the genomic clone of bovine ADRP and determined its sequence. A genomic Southern blot analysis confirmed that ADRP gene is present as a single copy in bovine genome and the ADRP gene spans 12 kb. Bovine ADRP genomic clone, HwADRPg-1, had 8 exons and 7 introns, and all splicing sites conformed to the GT/AG rule with the exon-intron boundaries located exactly. Analysis of the upstream 649 bp of the sequence of HwADRPg-1 showed that it does not contain any canonical TATAA boxes; however Sp1 binding sites and CAAT boxes are found. The promoter contained potential binding sites for AP-1, AP-2 and several putative transcription factor binding sites. The 5'-flanking region of HwADRPg-1 contained muscle specific transcription activator Myo G and C/EBP (CCAAT/ enhancer binding protein) recognizing site. These results suppose that the Myo G transcription activator regulate the transcription of bovine ADRP gene in muscular tissue and its transcriptional activity was triggered by degree of muscular development. Our results provide the necessary analysis for other flanking sequences are needed in addition to the proximal cis elements of this promoter to confer adipocyte differentiation-dependent or growth-dependent transcriptional control.

ADRP 유전자가 24개월령 한우 등심조직에서 발현량이 급격히 증가하여 30개월령 등심조직에서는 발현량이 다소 감소하는 발현양상 분석결과로부터 이전 연구에서는 ADRP 유전자를 한우 성장단계 특이발현 유전자로 선정하였다. 본 연구에서는 ADRP 유전자의 발현조절 기작을 분석하기 위하여 promoter 영역을 포함하는 ADRP 유전자 전체영역을 cloning하였으며, 구조를 분석하고 promoter의 특성을 조사하였다. 한우 ADRP cDNA 단편을 probe로 합성하여 Southern blot 분석을 실시한 결과로부터 ADRP 유전자가 한우 genome 상에서 single copy로 존재하고 크기는 대략 12 kb에 해당하는 것을 확인하였다. Genomic DNA library screening을 실시하여 promoter 영역을 포함하는 ADRP 전체 유전자에 해당하는 clone을 확보하고 HwADRPg-1으로 명명한 후, 염기서열을 결정하고 분석하였다. 한우 ADRP 유전자, HwADRPg-1은 8개의 exon과 7개의 intron으로 구성되어 있으며 모든 exon-intron 경계는 GT/AG 원칙을 따르고 있었고, coding 영역은 7,633 bp로서 6개의 intron에 의해 7개의 exon으로 나누어져 있었다. HwADRPg-1의 promoter 영역에서는 TATAA box는 발견되지 않았으며, -70 위치에 근육 특이적 transcription activator인 Myo G 서열이 존재하였고, -629 위치에는 지방세포의 분화를 유도하는 것으로 알려진 C/EBP (CCAAT/enhancer binding protein) 서열이 존재하였다. HwADRPg-1의 조절영역에 있는 Myo G factor가 근육조직에서 ADRP 유전자가 발현될 수 있도록 하며, 근육의 발달정도를 신호로써 감지하여 근육조직에서 성장단계에 따른 ADRP 유전자의 발현량을 조절할 것으로 추정되고, 다른 종류의 지방세포 특이적인 전사인자 및 지방세포의 분화정도를 신호로 인식하는 전사단계 조절인자를 조사하기 위하여 promoter 영역의 추가분석이 이루어져야 할 것으로 사료된다.

Keywords

References

  1. Birkenmeier, E. H., Gwynn, B., Howard, S., Jerry, J., Gordon, J. I., Landschulz, W. H. and McKnight, S. L. 1989. Tissue-specific expression, developmental regulation, and genetic mapping of the gene encoding CCAAT/enhancer binding pro- tein. Genes Dev 3(8):1146-56. https://doi.org/10.1101/gad.3.8.1146
  2. Blin, N. and Stafford, D. W. 1976. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 3: 2303-2308. https://doi.org/10.1093/nar/3.9.2303
  3. Brennan, T. J., Chakraborty, T. and Olson, E. N. 1991. Mutagenesis of the myogenin basic region identifies an ancient protein motif critical for activation of myogenesis. Proc. Natl. Acad. Sci. 88: 5675-5679. https://doi.org/10.1073/pnas.88.13.5675
  4. Christy, R. J., Kaestner, K. H., Geiman, D. E. and Lane, M. D. 1991. CCAAT/Enhancer binding protein gene promoter: Binding of nuclear factors during differentiation of 3T3 L-1 preadipocytes. Proc. Natl. Acad. Sci. 88: 2593-2597. https://doi.org/10.1073/pnas.88.6.2593
  5. Christy, R. J., Yang, V. W., Ntambi, J. M., Geiman, D. E., Landschulz, H., Friedman, A. D., Nakabeppu, Y., Kelly, T. J. and Lane, M. D. 1989. Differentiation-induced gene expression in3T3-L1 preadipocytes: CCAAT enhancer binding protein interacts with and activates the promoters of two adipocyte-specific genes. Genes Dev. 3: 1323-1335.
  6. Dang, C. V., Barrett, J., Villa-Garcia, M., Resar, L. M. S., Kato, G. J. and Fearon, E. R. 1991. Intracellular leucine zipper interactions suggest c-Myc hetero-oligomerization. Mol. Cell Biol. 11: 954-962. https://doi.org/10.1128/MCB.11.2.954
  7. Dong, Y., Cairns, W., Okret, S. and Gustafsson, J. A. 1990. A glucocorticoid-resistant rat hepatoma cell variant contains functional glucocorticoid receptors. J. Biol. Chem. 265: 7526-7531.
  8. Eisinger, D. P. and Serrero, G. 1993. Structure of the gene encoding mouse adipose differen- tiation-related protein (ADRP). Genomics. 16(3): 638-644.
  9. Funk, W. D. and Wright. W. E. 1992. Cyclic amplification and selection of targets for multi- component complexes: Myogenin interacts with factors recognizing binding sites for basic helix-- loop--helix, nuclear factor 1, myocyte-specific enhancer-binding factor 2, and COMP1 factor. Proc. Natl. Acad. Sci. 89: 9484-9488.
  10. Halazonetis, T. D. and Kandil, A. N. 1991. Determination of the C-MYC DNA-binding site. Proc. Natl. Acad. Sci. 88: 6162-6166. https://doi.org/10.1073/pnas.88.14.6162
  11. Herrera, R., Ro, H. S., Robinson, G. S., Xanthopoulos, K. G. and Spiegelman, B. M. 1989. A direct role for C/EBP and the AP-I-binding site in gene expression linked to adipocyte differentiation. Mol. Cell. BioI. 9:5331-5339. https://doi.org/10.1128/MCB.9.12.5331
  12. Hwang, C. S., Loftus, T. M., Mandrup, S. and Lane, M. D. 1997. Adipocyte differentiation and leptin expression. Annu. Rev. Cell. Dev. Biol, 13: 231-259. https://doi.org/10.1146/annurev.cellbio.13.1.231
  13. Jacob M. and Gallinaro H. 1989. The 5' splice site: phylogenetic evolution and variable geometry of association with UIRNA. Nucleic Acids Res. 11 :259-2180.
  14. Jiang, H. P. and Serrero, G. 1992. Isolation and characterization of a full-length cDNA coding for an adipose differentiation-related protein. Proc. Natl. Acad. Sci. 89(17):7856-7860.
  15. Kaestner, K. H., Christy, R. J. and Lane, M. D. 1990. Mouse insulin-responsive glucose transporter gene; Characterisation of the gene and transactivation by the CCAAT/enhancer bining protein. Proc. Natl. Acad. Sci. 87:251-255. https://doi.org/10.1073/pnas.87.1.251
  16. Mitchell, P. J. and Tjian, R. 1989. Transcriptional regulation in mammalian cells by sequense-specific DNA binding proteins. Science 245:371-378.
  17. Murphy, D. J. and Vance, J. 1999. Mechanisms of lipid-body formation. Trends. Biochem. Sci. 24(3): 109-115.
  18. Stroemstedt, P. -E., Poellinger, L., Gustafsson, J. A. and Carlstedt-Duke, J. 1991. The glucocorticoid receptor binds to a sequence overlapping the TATA box of the human osteocalcin promoter: A potential mechanism for negative regulation. Mol. Cell BioI. 11:3379-3383.
  19. Wang, X., Reape, T. J., Li, X., Rayner, K., Webb, C. L., Burnand, K. G. and Lysko, P. G. 1999. Induced expression of adipophilin mRNA in human macrophages stimulated with oxidized low-density lipoprotein and in atherosclerotic lesions. FEBS Lett 26;462(1-2):145-150.
  20. 장요순, 김태현, 윤두학, 박응우, 정일정, 조진기. 2002. Subtraction 기법을 이용한 한우 성장단계 특이발현 유전자 탐색. 한국동물자원과학회지. 44(1):13-22.