• Title/Summary/Keyword: Tissue-specific analysis

Search Result 424, Processing Time 0.036 seconds

Comparative proteomics and global genome-wide expression data implicate role of ARMC8 in lung cancer

  • Amin, Asif;Bukhari, Shoiab;Mokhdomi, Taseem A;Anjum, Naveed;Wafai, Asrar H;Wani, Zubair;Manzoor, Saima;Koul, Aabid M;Amin, Basit;Qurat-ul-Ain, Qurat-ul-Ain;Qazi, Hilal;Tyub, Sumira;Lone, Ghulam Nabi;Qadri, Raies A
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3691-3696
    • /
    • 2015
  • Background: Cancer loci comprise heterogeneous cell populations with diverse cellular secretions. Therefore, disseminating cancer-specific or cancer-associated protein antigens from tissue lysates could only be marginally correct, if otherwise not validated against precise standards. Materials and Methods: In this study, 2DE proteomic profiles were examined from lysates of 13 lung-adenocarcinoma tissue samples and matched against the A549 cell line proteome. A549 matched-cancer-specific hits were analyzed and characterized by MALDI-TOF/MS. Results: Comparative analysis identified a total of 13 protein spots with differential expression. These proteins were found to be involved in critical cellular functions regulating pyrimidine metabolism, pentose phosphate pathway and integrin signaling. Gene ontology based analysis classified majority of protein hits responsible for metabolic processes. Among these, only a single non-predictive protein spot was found to be a cancer cell specific hit, identified as Armadillo repeat-containing protein 8 (ARMC8). Pathway reconstruction studies showed that ARMC8 lies at the centre of cancer metabolic pathways. Conclusions: The findings in this report are suggestive of a regulatory role of ARMC8 in control of proliferation and differentiation in lung adenocarcinomas.

Accumulation of mtDNA Deletion (${\Delta}mtDNA^{4977}$) showing Tissue-Specific and Age-Related Variation (조직별 및 나이에 따른 마이토콘드리아 DNA 결손 (${\Delta}mtDNA^{4977}$)의 축적)

  • Jeong, Hye-Jin;Chung, Hyung-Min;Cho, Sung-Won;Kim, Hyun-Ah;Lee, Kyung-Sool;Kwon, Hwang;Choi, Dong-Hee;Kwak, In-Pyung;Yoon, Tae-Ki;Lee, Sook-Hwan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.3
    • /
    • pp.203-206
    • /
    • 2003
  • Objectives: Controversial arguments exists on both the case for and against on the accumulation of mitochondrial DNA (mtDNA) deletion in association to tissue and age. The debate continues as to whether this mutation is a major contributor to the phenotypic expression of aging and common degenerative diseases or simply a clinical insignificant epiphenomenon. The objective of this study was to determine whether the accumulation of mtDNA deletion is correlated with age-related and tissue-specific variation. Materials and Methods: One hundred and fifty-seven tissues from blood, ovary, uterine muscle, and abdominal muscle were obtained from patients ranging in age from 31$\sim$60 years. After reviewing the clinical reports, patients with mitochondrial disorder were excluded from this study. The tissues were obtained at gynecological surgeries with the consent of the patient. Total DNA isolated from blood, ovary, uterine muscle, and abdominal muscle was amplified by two rounds of PCR using two pairs of primers corresponding to positions 8225-8247 (sense), 13551-13574 (antisense) for the area around deleted mtDNA and 8421-8440 (sense), 13520-13501 (antisense) for nested PCR product. A statistical analysis was performed by $x^2$-test. Results: About 0% of blood, 94.8% of ovary, 71.4% of uterine muscle, and 86.1% abdominal muscle harbored mtDNA deletion. When we examined the proportion of deleted mtDNA according to age deletion rate was 90% of ovary, 63.6% of uterine muscle, 77.7% of abdominal muscle in thirties and 100% of all tissue in fifties. Conclusion: The findings of this study suggest that the mtDNA deletion is varied in tissue-specific pattern and increases with aging.

Chrysanthemum stunt viroid in Dendranthema grandiflorum

  • Chung, Bong-Nam;Park, Gug-Seoun;Kim, Hyun-Ran;Kim, Jeong-Soo
    • The Plant Pathology Journal
    • /
    • v.17 no.4
    • /
    • pp.194-200
    • /
    • 2001
  • Chrysanthemum stunt viroid (CSVd) ws identified in chrysanthemum cv. Chunkwang showing symptoms of stunt with leaf distortion (K1) and stunt with chlorosis of leaves (K2) collected from the main cultivation area of Masan, Kyongnam province in Korea. The specific RNAs related with the diseased chrysanthemums were detected. Full-length 354 bp CSVd cDNAs were amplified from infected tissue by reverse transcription and polymerase chain reaction using a pair of primers specific for CSVd sequence. The amplified cDNA products were analyzed by agarose gel electrophoresis and the specific cDNAs were cloned. Nucleotide sequences of the two CSVd isolates K1 and K2 varied. Phylogenetic analysis of the nucleotide sequences of CSVd isolates indicated that K1 was closely related with J2 and Am 2 isolates. K1 and K2 were transmitted by grafting to Dendranthema grandiflorum cv. Mistletoe, Gynura aurantiaca, and Lycopersicon esculentum cv. Rutgers. This is the first report of CSVd in D. grandiflorum in Korea.

  • PDF

Construction of Ovine Customer cDNA Chip and Analysis of Gene Expression Patterns in the Muscle and Fat Tissues of Native Korean Cattle (cDNA microarray를 이용하여 한우의 근육과 지방조직의 유전자 발현 패턴 분석 및 bovine customer cDNA chip 구성 연구)

  • Han, Kyung Ho;Choi, Eun Young;Hong, Yeon-Hee;Kim, Jae Yeong;Choi, In Soon;Lee, Sang-Suk;Choi, Yun Jaie;Cho, Kwang Keun
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.376-384
    • /
    • 2015
  • To investigate the molecular events of controlling intramuscular fat (or marbling), which is an important factor in the evaluation of beef quality, we performed cDNA microarray analyses using the longissimus dorsi muscle and back fat tissues. For this study, we constructed normalized cDNA libraries: fat tissues in native Korean cattle (displaying 1,211 specific genes), and muscle tissues in native Korean cattle (displaying 1,346 specific genes). A bovine cDNA chip was constructed with 1,680 specific genes, consisting of 760 genes from muscle tissues and 920 genes from fat tissues. The microarray analysis in this experiment showed a number of differentially expressed genes, which compared the longissimus dorsi muscle (Cy5) with back fat tissue (Cy3). Among many specific differentially expressed genes, 12-lipoxygenase (oxidizing esterified fatty acids) and prostaglandin D synthase (differentiation of fibroblasts to adipocytes) are the key candidate enzymes that should be involved in controlling the accumulation of intramuscular fat. In this study, differentially and commonly expressed genes in the muscle and fat tissues of native Korean cattle were found in large numbers, using the hybridization assay. The expression levels of the selected genes were confirmed by semi-quantitative RT-PCR, and the results were similar to those of the cDNA microarray.

Genes expression monitoring using cDNA microarray: Protocol and Application

  • Muramatsu Masa-aki
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2000.11a
    • /
    • pp.31-41
    • /
    • 2000
  • The major issue in the post genome sequencing era is determination of gene expression patterns in variety of biological systems. A microarray system is a powerful technology for analyzing the expression profile of thousands of genes at one experiment. In this study, we constructed cDNA microarray which carries 2,304 cDNAS derived from oligo-capped mouse cDNA library. Using this hand-made microarray we determined gene expression in various biological systems. To determine tissue specific genes, we compared Nine genes were highly-expressed in adult mouse brain compared to kidney, liver, and skeletal muscle. Tissue distribution analysis using DNA microarray extracted 9 genes that were predominantly expressed in the brain. A database search showed that five of the 9 genes, MBP, SC1, HiAT3, S100 protein-beta, and SNAP25, were previously known to be expressed at high level in the brain and in the nervous system. One gene was highly sequence similar to rat S-Rex-s/human NSP-C, suggesting that the gene is a mouse homologue. The remaining three genes did not match to known genes in the GenBank/EMBL database, indicating that these are novel genes highly-expressed in the brain. Our DNA microarray was also used to detect differentiation specific genes, hormone dependent genes, and transcription-factor-induced genes. We conclude that DNA microarray is an excellent tool for identifying differentially expressed genes.

  • PDF

Gene structure and expression characteristics of liver-expressed antimicrobial peptide-2 isoforms in mud loach (Misgurnus mizolepis, Cypriniformes)

  • Lee, Sang Yoon;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.12
    • /
    • pp.31.1-31.11
    • /
    • 2017
  • Background: Liver-expressed antimicrobial peptide-2 (LEAP-2) is an important component of innate immune system in teleosts. In order to understand isoform-specific involvement and regulation of LEAP-2 genes in mud loach (Misgurnus mizolepis, Cypriniformes), a commercially important food fish, this study was aimed to characterize gene structure and expression characteristics of two paralog LEAP-2 isoforms. Results: Mud loach LEAP-2 isoforms (LEAP-2A and LEAP-2B) showed conserved features in the core structure of mature peptides characterized by four Cys residues to form two disulfide bonds. The two paralog isoforms represented a tripartite genomic organization, known as a common structure of vertebrate LEAP-2 genes. Bioinformatic analysis predicted various transcription factor binding motifs in the 5'-flanking regions of mud loach LEAP-2 genes with regard to development and immune response. Mud loach LEAP-2A and LEAP-2B isoforms exhibited different tissue expression patterns and were developmentally regulated. Both isoforms are rapidly modulated toward upregulation during bacterial challenge in an isoform and/or tissue-dependent fashion. Conclusion: Both LEAP-2 isoforms play protective roles not only in embryonic and larval development but also in early immune response to bacterial invasion in mud loach. The regulation pattern of the two isoform genes under basal and stimulated conditions would be isoform-specific, suggestive of a certain degree of functional divergence between isoforms in innate immune system in this species.

Possibility of Undifferentiated Human Thigh Adipose Stem Cells Differentiating into Functional Hepatocytes

  • Lee, Jong Hoon;Lee, Kuk Han;Kim, Min Ho;Kim, Jun Pyo;Lee, Seung Jae;Yoon, Jinah
    • Archives of Plastic Surgery
    • /
    • v.39 no.6
    • /
    • pp.593-599
    • /
    • 2012
  • Background This study aimed to investigate the possibility of isolating mesenchymal stem cells (MSCs) from human thigh adipose tissue and the ability of human thigh adipose stem cells (HTASCs) to differentiate into hepatocytes. Methods The adipose-derived stem cells (ADSCs) were isolated from thigh adipose tissue. Growth factors, cytokines, and hormones were added to the collagen coated dishes to induce the undifferentiated HTASCs to differentiate into hepatocyte-like cells. To confirm the experimental results, the expression of hepatocyte-specific markers on undifferentiated and differentiated HTASCs was analyzed using reverse transcription polymerase chain reaction and immunocytochemical staining. Differentiation efficiency was evaluated using functional tests such as periodic acid schiff (PAS) staining and detection of the albumin secretion level using enzyme-linked immunosorbent assay (ELISA). Results The majority of the undifferentiated HTASCs were changed into a more polygonal shape showing tight interactions between the cells. The differentiated HTASCs up-regulated mRNA of hepatocyte markers. Immunocytochemical analysis showed that they were intensely stained with anti-albumin antibody compared with undifferentiated HTASCs. PAS staining showed that HTASCs submitted to the hepatocyte differentiation protocol were able to more specifically store glycogen than undifferentiated HTASCs, displaying a purple color in the cytoplasm of the differentiated HTASCs. ELISA analyses showed that differentiated HTASCs could secrete albumin, which is one of the hepatocyte markers. Conclusions MSCs were islolated from human thigh adipose tissue differentiate to heapatocytes. The source of ADSCs is not only abundant abdominal adipose tissue, but also thigh adipose tissue for cell therapy in liver regeneration and tissue regeneration.

Intragenic DNA Methylation Concomitant with Repression of ATP4B and ATP4A Gene Expression in Gastric Cancer is a Potential Serum Biomarker

  • Raja, Uthandaraman Mahalinga;Gopal, Gopisetty;Rajkumar, Thangarajan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5563-5568
    • /
    • 2012
  • Based on our previous report on gastric cancer which documented ATP4A and ATP4B mRNA down-regulation in gastric tumors relative to normal gastric tissues, we hypothesized that epigenetic mechanisms could be responsible. ATP4A and ATP4B mRNA expression in gastric cancer cell lines AGS, SNU638 and NUGC-3 was examined using reverse transcriptase PCR (RT-PCR). AGS cells were treated with TSA or 5'-AzaDC and methylation specific PCR (MSP) and bisulfite sequencing PCR (BSP) analysis were performed. MSP analysis was on DNA from paraffin embedded tissues sections and plasma. Expression analysis revealed downregulation of ATP4A and ATP4B genes in gastric cancer cell lines relative to normal gastric tissue, while treatment with 5'-AzaDC re-activated expression of both. Search for CpG islands in their putative promoter regions did not indicate CpG islands (CGI) but only further downstream in the bodies of the genes. Methylation specific PCR (MSP) in the exon1 of the ATP4B gene and exon7 in ATP4A indicated methylation in all the gastric cancer cell lines tested. MSP analysis in tumor tissue samples revealed methylation in the majority of tumor samples, 15/19, for ATP4B and 8/8 for ATP4A. There was concordance between ATP4B and ATP4A down-regulation and methylation status in the tumour samples tested. ATP4B methylation was detectable in cell free DNA from gastric cancer patient's plasma samples. Thus ATP4A and ATP4B down-regulation involves DNA methylation and methylated ATP4B DNA in plasma is a potential biomarker for gastric cancer.

Micro-CT - a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results

  • Cengiz, Ibrahim Fatih;Oliveira, Joaquim Miguel;Reis, Rui L.
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.279-289
    • /
    • 2018
  • Background: Cell behavior is the key to tissue regeneration. Given the fact that most of the cells used in tissue engineering are anchorage-dependent, their behavior including adhesion, growth, migration, matrix synthesis, and differentiation is related to the design of the scaffolds. Thus, characterization of the scaffolds is highly required. Micro-computed tomography (micro-CT) provides a powerful platform to analyze, visualize, and explore any portion of interest in the scaffold in a 3D fashion without cutting or destroying it with the benefit of almost no sample preparation need. Main body: This review highlights the relationship between the scaffold microstructure and cell behavior, and provides the basics of the micro-CT method. In this work, we also analyzed the original papers that were published in 2016 through a systematic search to address the need for specific improvements in the methods section of the papers including the amount of provided information from the obtained results. Conclusion: Micro-CT offers a unique microstructural analysis of biomaterials, notwithstanding the associated challenges and limitations. Future studies that will include micro-CT characterization of scaffolds should report the important details of the method, and the derived quantitative and qualitative information can be maximized.

Stage and Tissue Specific Expression of Four TCR Subunits in Olive Flounder (Paralichthys olivaceus)

  • Lee, Young Mee;Lee, Jeong-Ho;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Hwang, In Joon;Kim, Sung Yeon
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.329-335
    • /
    • 2013
  • TCR subunits are members of membrane-bound receptors which allow the fast and efficient elimination of the specific fish pathogens have regulated function in adaptive immunity. Sequence structure of TCR subunits have been reported for various teleosts, but the information of each TCR subunit functional characterization through expression analysis in fish was unknown. In this study, we examined the gene expression of TCR subunits in the early developmental stages and observed transcript levels in various tissues from healthy adult olive flounder by RT-PCR. The mRNA expression of alpha subunit was already detected in the previous hatching step. But the transcripts of another TCR subunit were not observed during embryo development and increased after hatching and maintained until metamorphosis at the same level. It was found that all TCR subunits mRNAs are commonly expressed in the immune-related organ such as spleen, kidney and gill, also weak expressed in fin and eye. TCR alpha and beta subunit were expressed in brain, whereas gamma and delta were not expressed same tissue. The sequence alignment analysis shows that there are more than 80% sequence homology between TCR subunits. Because it has a high similarity of amino acid sequence to expect similar in function, but expression analysis show that will have may functional diversity due to different time and place of expression.