• Title/Summary/Keyword: Tissue viability

Search Result 327, Processing Time 0.027 seconds

The Viability & Vascularization of the Cryopreserved Rat Tracheal Allografts with Omental Implantation (초냉동 보관된 백서의 동종 기관 이식편의 대망 내 이식에 따른 조직 생육성 및 혈관 형성)

  • 김용희;김동관;김규래;박승일
    • Journal of Chest Surgery
    • /
    • v.37 no.8
    • /
    • pp.623-631
    • /
    • 2004
  • Background: Using the neovascularizing properties of the omentum, we studied the viability and vascularity of the cryopreserved rat tracheal allografts with omental implantation. Material and Method: The cryopreserved tracheal allografts of eight-week old male Sprague Dawley rats were implanted into the omentum. The rats were divided into the four groups according to the duration of cryopreservation and of omental implantation. We examined the tracheal allografts histologically for viability of cartilages, inflammation and fibrosis of smooth muscle and connective tissue, and degree of vascularity. Result: The degree of inflammation in the smooth muscle and the connective tissue of the tracheal allografts was not statistically related to neither the duration of cryopreservation or of omental implantation. The tracheal cartilages of the tracheal allografts were found to be severely calcified in all cases. Significant difference in vascularity was found between the groups I and II (p < 0.05). And a sufficient vascularity in the intercartilaginous space was observed in the mid portion of the tracheal allografts as well as both ends. Conclusion: In conclusion, the omental implantation for 2 weeks could establish a sufficient vascularity in the intercartilaginous spaces for maintaining the viability of the tracheal allografts. This study might provide a possibility of the sequential tracheal allotransplantation after omental implantation.

Clinical Application of Instep Flap (내측 족저 동맥을 이용한 도피판술의 임상적 고찰)

  • Chung, Duke-Whan;Han, Chung-Soo;Kim, Yong-Hwan;Nam, Gi-Un;Kim, Jin-Won
    • Archives of Reconstructive Microsurgery
    • /
    • v.2 no.1
    • /
    • pp.46-52
    • /
    • 1993
  • Soft-tissue deficits over the plantar forefoot, plantar heel, Achilles tendon, and distal parts of lower leg are often troublesome to cover with a simple graft or local flap due to limited mobility of surrounding skin and poor circulation in these area. Soft-tissue reconstruction in these regions should provide tissue components similar to the original lost tissue, supply durability and minimal protective pressure sensation and result in a donor site that is well tolerated and treated. We analysed 7 cases that were treated with the Instep flap due to soft-tissue defects over these regions from July of 1990 to July of 1993. All flaps were viable and successful at follow-up. 1. The age ranged from 9 years to 60 years, and 6 cases were male and 1 case female. 2. The sites of soft-tissue loss were the plantar forefoot(1 case), plantar heel(3 cases), Achilles tendon(2 cases), and distal parts of lower leg(1 case). 3. The causes of soft-tissue loss were simple soft-tissue crushing injury(1 case), crushing injury of the 1st toe(1 case) and posttraumatic infection and necrosis(5 cases). 4. The associated injury were open distal tibio-fibula, fracture(2 cases), medial malleolar fracture of the ankle(1 case), Achilles tendon rupture(2 case) and 1st metatarso-phalangeal disarticulation(1 case). 5. The size of flap was from $3{\times}4cm$ to $5{\times}10cm$(average $4{\times}5.6cm)$. 6. In 7 cases, we were not to find post-operative necrosis and infection, non-viability, limitation of ankle joint, and gait disturbance caused by the Instep flap surgery. 7. This study demonstrates that the Instep flap should be considered as another valuable technique in reconstruction of these regions.

  • PDF

A STUDY ON THE OSTEOGENIC DIFFERENTIATION OF ADIPOSE-DERIVED ADULT STEM CELL (지방조직 유래 줄기세포의 조골세포로의 분화에 대한 실험적 연구)

  • Lee, Eui-Seok;Jang, Hyon-Seok;Kwon, Jong-Jin;Rim, Jae-Suk
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.2
    • /
    • pp.133-141
    • /
    • 2008
  • Stem cells have self-renewal capacity, long-term viability, and multiline age potential. Adult bone marrow contains mesenchymal stem cells. Bone marrow-derived mesenchymal stem cells (BMSCs) are progenitors of skeletal tissue components and can differentiate into adipocytes, chondrocytes, osteoblasts, and myoblasts in vitro and undergo differentiation in vivo. However, the clinical use of BMSCs has presented problems, including pain, morbidity, and low cell number upon harvest. Recent studies have identified a putative stem cell population within the adipose tissue. Human adipose tissue contains pluripotent stem cells simillar to bone marrow-derived stem cells that can differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. Human adipose tissue-derived stem cells (ATSCs) could be proposed as an alternative source of adult bone marrow stem cells, and could be obtained in large quantities, under local anesthesia, with minimal discomfort. Human adipose tissue obtained by liposuction was processed to obtain ATSCs. In this study, we compared the osteogenic differentiation of ATSCs in a specific osteogenic induction medium with that in a non-osteogenic medium. ATSCs were incubated in an osteogenic medium for 28 days to induce osteogenesis respectively. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining. Expression of osteocyte specific bone sialoprotein, osteocalcin, collagen type I and alkaline phosphatase, bone morphogenic protein 2, bone morphogenic protein 6 was confirmed by RT-PCR. ATSCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes was also detected. Since this cell population can be easily identified through fluorescence microscopy, it may be an ideal source of ATSCs for further experiments on stem cell biology and tissue engineering. The present results show that ADSCs have an ability to differentiate into osteoblasts. In the present study, we extend this approach to characterize adipose tissue-derived stem cells.

Effect of HRE and Bcl-2 on the Production of Plasminogen Activator in CHO cells

  • Bae, Geun-Won;No, Jeong-Gwon;Lee, Gyu-Min;Kim, Ik-Yeong;Kim, Ik-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.261-264
    • /
    • 2002
  • CHO (Chinese hamster ovary) cells were transfected with plasmids containing both cis-acting HRE (hypoxia response element) and CMV-promoter that controls tissue-type plasminogen activator (t-PA). CHO cells with HRE produced 16.2 fold higher t-PA concentration than CHO cells without HRE. It was noted that hypoxia strongly induced CHO cell apoptosis. which resulted in decrease of cell viability and protein production. In this study. by introducing Bcl-2, anti-apoptotic gene, we tried to recover cell viability and increase the protein production. When batch culture of both control cells without transfection of Bcl-2 and cells transfected with Bcl-2 were performed in the absence of CoCl ι hypoxia mimic condition. the cells with Bcl-2 were effected specific cell growth rates, maximum cell density. Immunoblotting assay showed Bcl-2 was recombinant with HRE dependent t- P A expression cassette, and their expression level was depended on hypoxia. By introducing Bcl-2, both cell viability and maximum cell density could be increased.

  • PDF

Effect of L-Glutamic Acid and Paraben Solution on the Endothelial Cell Proliferation in the Glutaraldehyde- Fixed Bovine Pericardium (글루타르알데하이드 고정 소심 낭막에서의 내피세포 증식에 대한 글루탕산 및 파라벤용액의 효과)

  • Kim, Beom-Sik;Lee, Mun-Hwan;Yu, Se-Yeong;Kim, Won-Gon
    • Journal of Chest Surgery
    • /
    • v.29 no.1
    • /
    • pp.7-13
    • /
    • 1996
  • The conventional glutaraldehyde (GA) fixation method of tissue valves is considered to be responsible for accelerated valve degeneration. The release of toxic GA from the valve tissue is believed to limit endothelial cell (EC) ingrowth. Removal of toxic GA by reaction with L-glutamic acid and storage in a Paraben solution may offer good EC growth. To investigate the conditions for endothelialization of tissue valves, the growth properties of ECs on the conventionally and alternatively treated pericardial tissue were compared. Conventional preparation included zero-pressure fixation for 72 hours in phosphated-buffered saline (PBS) solution containing 0.5% GA at 4$^{\circ}C$ and storage into PBS containing 0.2% GA(group I). Alternatively treated pericardial tissues were divided into three postfixation treatment groups : (1) storage in PBS solution containing Paraben(group II), (2) treatment with PBS containing 8$^{\circ}C$ L-glutamic acid(PH 7.35) and storage in PBS solution containing Paraben (g oup III), (3) treatment with L-glutamic acid dissolved in distilled water (PH 3.5) (group IV). Pericardial tissue were transferred into the 24-well plate after storage for 4 weeks. ECs were harvested enzymatically from the bovine pulmonary artery and grown to confluence on culture flask surfaces. Detached ECs by trypsin were incubated into the each well of the 24-well plate including test pericardial tissues. Cells were detached by trypsin, 1, 2, 3, 5, 7 days after incubation and counted on the hemacytometer. Cell viability test was performed by frypan-blue exclusion method. Acute cell death in the group I were found even after prolonged washing. The group II showed prolonged cell survival compared with the group I. Both group III and group IV showed better cell growth than group II. There was no statistically significant difference between group III and group IV method in terms of EC growth. This results suggest that treatment by L-glutamic ac id and storage in a Paraben solution be a promising approach for improvement of durability of GA-treated tissue valves.

  • PDF

Improvement of biohistological response of facial implant materials by tantalum surface treatment

  • Bakri, Mohammed Mousa;Lee, Sung Ho;Lee, Jong Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.52.1-52.8
    • /
    • 2019
  • Background: A compact passive oxide layer can grow on tantalum (Ta). It has been reported that this oxide layer can facilitate bone ingrowth in vivo though the development of bone-like apatite, which promotes hard and soft tissue adhesion. Thus, Ta surface treatment on facial implant materials may improve the tissue response, which could result in less fibrotic encapsulation and make the implant more stable on the bone surface. The purposes of this study were to verify whether surface treatment of facial implant materials using Ta can improve the biohistobiological response and to determine the possibility of potential clinical applications. Methods: Two different and commonly used implant materials, silicone and expanded polytetrafluoroethylene (ePTFE), were treated via Ta ion implantation using a Ta sputtering gun. Ta-treated samples were compared with untreated samples using in vitro and in vivo evaluations. Osteoblast (MG-63) and fibroblast (NIH3T3) cell viability with the Ta-treated implant material was assessed, and the tissue response was observed by placing the implants over the rat calvarium (n = 48) for two different lengths of time. Foreign body and inflammatory reactions were observed, and soft tissue thickness between the calvarium and the implant as well as the bone response was measured. Results: The treatment of facial implant materials using Ta showed a tendency toward increased fibroblast and osteoblast viability, although this result was not statistically significant. During the in vivo study, both Ta-treated and untreated implants showed similar foreign body reactions. However, the Ta-treated implant materials (silicone and ePTFE) showed a tendency toward better histological features: lower soft tissue thickness between the implant and the underlying calvarium as well as an increase in new bone activity. Conclusion: Ta surface treatment using ion implantation on silicone and ePTFE facial implant materials showed the possibility of reducing soft tissue intervention between the calvarium and the implant to make the implant more stable on the bone surface. Although no statistically significant improvement was observed, Ta treatment revealed a tendency toward an improved biohistological response of silicone and ePTFE facial implants. Conclusively, tantalum treatment is beneficial and has the potential for clinical applications.

Viability of In Vitro Fertilized Bovine Embryos Following In Vitro Culture and Embryo Transfer (소 체외수정란의 체외배양 및 이식후 생존성)

  • 정희태;유재원;박연수;양부근;김정익
    • Journal of Embryo Transfer
    • /
    • v.9 no.3
    • /
    • pp.221-227
    • /
    • 1994
  • This study was conducted to examine the condition of in vitro culture system and the viability after embryo transfer of in vitro matured-in vitro fertilized (IVM-IVF) bovine embryos. The in vitro development to the blastocyst stage was enhanced by supplying bovine serum albumin(BSA) to co-culture medium with bovine oviduct epithelial tissue(BOET) compared with that in medium supplemented with fetal bovine serum(FBS) (41.2% vs. 26. 3%, P<0.05). After transfer of IVM-IVF blastocysts into the uterine horn of recipient females (Aberdeen Angus), one was pregnant to term and produced a head of male Korean native calf. These results confirm that the in vitro development of IVM-IVF bovine embryos is affected with different protein source in co-culture with BOET, and IVM-IVF embryos can develop to term after in vitro culture and embryo transfer.

  • PDF

Fertility preservation in pig using ovarian tissues by vitrification method

  • Hwang, In-Sul
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.106-112
    • /
    • 2022
  • Cryopreservation of porcine ovarian tissue by vitrification method is a promising approach to preserve genetic materials for future use. However, information is not enough and technology still remains in a challenge stage in pig. Therefore, the objective of present study was to determine possibility of vitrification method to cryopreserve porcine ovarian tissue and to confirm an occurrence of cryoinjuries. Briefly, cryoinjuries and apoptosis patterns in vitrified-warmed ovarian tissue were examined by histological evaluation and TUNEL assay respectively. In results, a damaged morphology of oocytes was detected among groups and the rate was significantly (p < 0.05) lower in vitrification group (25.8%) than freezing control group (67.7%), while fresh control group (6.6%) showed significantly (p < 0.05) lower than both groups. In addition, cryoinjury that form a wave pattern of tissues around follicles was found in the frozen control group, but not in the fresh control group as well as in the vitrification group. Apoptotic cells in follicle was observed only in freezing control group while no apoptotic cell was found in both fresh control and vitrification. Similarly, apoptotic patterns of tissues not in follicle were comparable between fresh control and vitrification groups while freezing control group showed increased tendency. Conclusively, it was confirmed that vitrification method has a prevention effect against cryoinjury and this method could be an alternative approach for cryopreservation of genetic material in pigs. Further study is needed to examine the viability of oocytes derived from vitrified-warmed ovarian tissue.

Zinc deficiency decreased cell viability both in endothelial EA.hy926 cells and mouse aortic culture ex vivo and its implication for anti-atherosclerosis

  • Cho, Young-Eun;Choi, Jee-Eun;Alam, Md. Jahangir;Lee, Man-Hyo;Sohn, Ho-Yong;Beattie, John H.;Kwun, In-Sook
    • Nutrition Research and Practice
    • /
    • v.2 no.2
    • /
    • pp.74-79
    • /
    • 2008
  • Zinc plays a protective role in anti-atherosclerosis but the clear mechanism has not been proposed yet. In the present study, we evaluated whether zinc modulates atherosclerotic markers, VACM-1 and ICAM-1 and cell viability both in endothelial cells in vitro and mouse aortic cell viability ex vivo. In study 1, as in vitro model, endothelial EA.hy926 cells were treated with $TNF{\alpha}$ for 5 hours for inducing oxidative stress, and then treated with Zn-adequacy ($15\;{\mu}M$ Zn) or Zn-deficiency ($0\;{\mu}M$ Zn) for 6 hours. Pro-atherosclerosis factors, VCAM-1 and ICAM-1 mRNA expression and cell viability was measured. In study 2, as ex vivo model, mouse aorta ring was used. Mourse aorta was removed and cut in ring then, cultured in a 96-well plate. Aortic ring was treated with various $TNF{\alpha}$ (0-30 mg/ml) and intracellular zinc chelator, N, N, N', N', -tetrakis (2-pyridylmethyl) ethylenediamine (TPEN, $0-30\;{\mu}M$) for cellular zinc depletion for 2 days and then cell viability was measured. The results showed that in in vitro study, Zn-adequate group induced more VCAM-1 & ICAM-1 mRNA expression than Zn-deficient group during 6-hour zinc treatment post-5 hour TNF-$\alpha$ treatment, unexpectedly. These results might be cautiously interpreted that zinc would biologically induce the early expression of anti-oxidative stress through the increased adhesion molecule expression for reducing atherosclerotic action, particularly under the present 6-hour zinc treatment. In ex vivo, mouse aortic ring cell viability was decreased as TNF-$\alpha$ and TPEN levels increased, which suggests that mouse aortic blood vessel cell viability was decreased, when oxidative stress increases and cellular zinc level decreases. Taken together, it can be suggested that zinc may have a protective role in anti-atherosclerosis by cell viability in endothelial cells and aorta tissue. Further study is needed to clarify how pro-atherosclerosis molecule expression is modulated by zinc.

The Effect of Pore Sizes on Poly(L-lactide-co-glycolide) Scaffolds for Annulus Fibrosus Tissue Regeneration (조직공학적 섬유륜재생을 위한 PLGA 지지체 제조시 다공크기의 영향에 관한 연구)

  • So, Jeong-Won;Jang, Ji-Wook;Kim, Soon-Hee;Choi, Jin-Hee;Rhee, John-M.;Min, Byung-Hyun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.516-522
    • /
    • 2008
  • Biodegradable polymers have been used extensively as scaffolding materials to regenerate new tissues and the ingrowth of tissue have been reported to be dependent directly of the porosity, pore diameter, pore shape, and porous structure of the scaffold. In this study, porous poly (L-lactide-co-glycolide) (PLGA) scaffolds with five different pore sizes were fabricated to investigate the effect of pore sizes for AF tissue regeneration. Cellular viability and proliferation were assayed by MTT test. Hydroxyproline/DNA content of AF cells on each scaffold was measured. sGAG analyses were performed at each time point of 2 and 6 weeks. Scaffold seeded AF cells were implanted into the back of athymic nude mouse to observe the difference of formation of disc-like tissue depending on pore size in vivo. We confirmed that scaffold with $180{\sim}250{\mu}m$ pores displayed high cell viability in vitro and produced higher ECM than scaffold with other pore sizes in vivo.