• Title/Summary/Keyword: Tissue viability

Search Result 327, Processing Time 0.027 seconds

Improvement of Liver Function and Suppressed Lipid Peroxidation of Extract from Ginseng Folium and Stem in Acute $CCl_4$ Intoxicated Rats ($CCl_4$로 급성 간손상을 유도한 백서에서 인삼엽과 경추출물의 간기능 개선과 항산화 작용)

  • Lee Min Kyung;Park Sung Hye;Seo Eui Suok;Kim Ki Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1485-1489
    • /
    • 2004
  • Panax ginseng is the one of best famous phytochemical plant in the world and it's various positive effects such as antioxidant, regulation of immunity are very well known. In this study, we investigated primary the cell viability and morphological change and secondary an antioxidative effect and liver function improvement of extract from Ginseng folium and stem in CCl4 intoxicated rats. The NCTC cell line were used for cell viability and sirius red staining before the animal experiment. The female Sprague-Dawley rats (90-100g) were divided into 3 groups (Normal, AC: CCl₄ treated group, GFS: CCl₄+ extract of Ginseng folium and stem treated group) and acute liver damage was developed by one time administration of CCl₄ mixture (0.5㎖/rat). The liver tissue and sera were collected and used for quantitative measurement of enzyme activity (AST, ALT, ALP, BUN), MDA and Hyp. As a result, cell viability in GFS treated group (in concentration of 3.33-33.33㎎ GFS/200㎕ medium) was 180.9-241.0% significantly and dose dependently higher than in control group. And potential state of cell growth and differentiation and no criteria of cytoplasm lysis and nucleus breaking were observed in control and GFS group. The parameters of liver function (AST and ALP) in sera of GFS group showed significantly 93% and 67.6% lower than AC group (p<0.005-0.05). And the level of ALT and BUN showed fast similar in AC group and GFS group. The concentration of MDA in liver was decreased 576.5% significantly in GFS group when compared with AC group (p<0.005). The content of Hyp in GFS group is merely lower than in AC group. In conclusion, the water extract of Ginseng folium and stem such as Ginseng radix may be possessed the antioxidative effect and improvement of liver function in CCl₄ intoxicated rats.

Antagonic Effects of Dexamethasone on FK506-induced Antitumor Effects in Hep3B Cells (간암세포주(Hep3B cell)에서 FK506의 항암효과에 대한 dexamethasone의 길항효과)

  • Park, Hye-Min;Lee, Sei-Jin;Kim, Sun-Young;Go, Hyeon-Kyu;Jeon, Seol-Hee;Kim, Shang-Jin;Kang, Hyung-Sub;Kim, Jin-Shang
    • Journal of Veterinary Clinics
    • /
    • v.28 no.6
    • /
    • pp.549-554
    • /
    • 2011
  • FK506 is a widespread immunosuppressive drug after liver transplantion in patients with advanced-stage hepatocellular carcinoma. Dexamethasone is frequently used as co-treatment in cytotoxic cancer therapy, e.g. to prevent nausea, to protect normal tissue or for other reasons. Our aim was to investigate antitumor effects of FK506 in Hep3B cells, one of differentiated human hepatocellular carcinoma cell lines and inhibitory effects of dexamethsone on FK506- induced antitumor effects. Cell injury was evaluated by biochemical assays as cell viability, lactate dehydrogenase (LDH) and reactive oxygen species (ROS) in Hep3B cells. Intracellular calcium concentration ([$Ca^{2+}$]i) and the level of activation of the c-Jun-N-terminal kinase (JNK) and the Bax protein in cultured Hep3B cells was measured. Exposure of 0.1 ${\mu}M$ FK506 to Hep3B cells led to cell death accompanied by a decrease in cell viability and an increase in LDH, ROS and [$Ca^{2+}$]i. FK506 induced an increase in activity of Bax and JNK protein but inhibited the activity of Bcl-2 protein. Treatment of dexamethsone, per se, had no effects on cell viability, LDH and ROS. However, co-treatment of FK506 and dexamethasone diminished the FK506-induced LDH release, ROS generation and JNK activation. These results demonstrate that FK506 has antitumor effect in Hep3B cells but the combination of FK506 and dexamethasone antagonizes the FK506-induced antitumor effects.

Effect of (-)-epigallocatechin-3-gallate on maintaining the periodontal ligament cell viability of avulsed teeth: a preliminary study

  • Jung, Im-Hee;Yun, Jeong-Ho;Cho, Ah-Ran;Kim, Chang-Sung;Chung, Won-Gyun;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.1
    • /
    • pp.10-16
    • /
    • 2011
  • Purpose: Avulsed tooth can be completely recovered, if sound periodontal ligament (PDL) of tooth is maintained. Although a lot of storage solutions have been explored for the better storage of avulsed tooth, there is a shortcoming that the preservation time is much short. On the other hand, there has been studies that (-)-epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, which is related to the anti inflammatory, antioxygenic, and antibacterial effects, allows the successful preservations of tissues and cells. This study evaluated the effect of EGCG on avulsed-teeth preservation of Beagle dogs for a period of time. Methods: The atraumatically extracted teeth of Beagle dogs were washed and preserved with 0/10/$100\;{\mu}M$ of EGCG at the time of immediate, period 1 (4 days in EGCG-contained media and additional 1 day in EGCG-free media), period 2 (8 days in EGCG-contained media and additional 2 days in EGCG-free media) and period 3 (12 days in EGCG-contained media and additional 2 days in EGCG-free media). Then, the cell viabilities of preserved teeth was calculated by dividing optical density (OD) of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with OD of eosin assay to eliminate the measurement errors caused by the different tissue volumes. Results: From the results, the immediately analyzed group presented the highest cell viability, and the rate of living cells on teeth surface decreased dependent on the preservation period. However, the $100\;{\mu}M$ of EGCG-treated group showed statistically significant positive cell activity than EGCG-free groups throughout preservation periods. Conclusions: Our findings showed that $100\;{\mu}M$ EGCG could maintain PDL cell viability of extracted tooth. These results suggest that although EGCG could not be a perfect additive for tooth preservation, it is able to postpone the period of tooth storage. However, further in-depth studies are required for more plausible use of EGCG.

Functional Significance of Angiographic Collaterals in Patients with Totally Occluded Right Coronary Artery: Intracoronary Thallium-201 Scintigraphy (우측 관상동맥 폐쇄 환자에서 관상동맥내 Thallium-201 주사를 이용한 측부 혈행의 의의)

  • Lee, Do-Yun;Lee, Jong-Doo;Cho, Seung-Yun;Shim, Won-Heum;Ha, Jong-Won;Kim, Han-Soo;Kwon, Hyuk-Moon;Jang, Yang-Soo;Chung, Nam-Sik;Kim, Sung-Soon;Park, Chang-Yun;Kim, Young-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.2
    • /
    • pp.210-217
    • /
    • 1993
  • To compare the myocardial viability in patients suffering from total occlusion of the right coronry artery (RCA) with the angiographic collaterals, intracoronary injection of Thallium-201 (T1-201) was done to 14 coronary artery disease (CAD) patients (pts) with total occlusion of RCA and into four normal subjects for control. All 14 CAD pts had Grade 2 or 3 collateral circulations. There were 14 male and 4 females, and their ages ranged from 31 to 70 years. In nine pts, T1-201 was injected into left main coronary artery (LCA) ($300{\sim}350{\mu}Ci$) to evaluate the myocardial viability of RCA territory through collateral circulations. The remaining five pts received T1-201 into RCA ($200{\sim}250{\mu}Ci$) because two had intraarterial bridging collaterals and three had previous successful PTCA. Planar & SPECT myocardial perfusion images were obtained 30 minutes, and four to five hours after T1-201 injection. Intravenous T1-201 reinjection (six pts) or $^{99m}Tc-MIBI$ (two pts) were also performed in eight CAD pts. Intracoronary myocardial perfusion images were compared with intravenous T1-201 (IV T1-201) images, ECG, and ventriculography. Intracoronary T1-201 images proved to be superior to that of IV T1-201 due to better myocardial to background uptake ratio and more effective in the detection of viable tissue. We also found that perfusion defects were smaller on intracoronary T1-201 images than those on the IV T1-201. All of the 14 CAD pts had either mostly viable myocardium (seven pts) or large area of T1-201 perfusion (seven pts) in RCA territory, however ventriculographic wall motion and ECG did not correlate well with intracoronary myocardial perfusion images. In conclusion, total RCA occlusion patients with well developed collateral circulation had large area of viable myocardial in the corresponding territory.

  • PDF

Effect of Storage Media and Duration on Pulpal Cell Viability in Exfoliated Deciduous Teeth (탈락 유치 내 치수 세포의 보관 용액과 기간에 따른 생존)

  • Park, Jiwon;Song, Jeseon;Lee, Jaeho;Kim, Seongoh;Jeon, Mijeong;Jung, Hansung;Son, Heungkyu
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.41 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • If it is possible to preserve and culture cells from exfoliated deciduous teeth in a readily available storage medium within each family, more stem cells would be obtained. This research is about the effect of storage media and time on pulpal cell viability of exfoliated deciduous teeth. 330 exfoliated deciduous teeth were randomly divided into 11 groups; fresh group, dry group, groups stored in cell culture medium (2, 4, 7 days each), in milk (2, 4, 7 days each), and in saline (2, 4, 7 days each). Primary culture of pulpal cells was conducted in each group and the success rates were compared by calculating the number of teeth with viable cells. The result of primary culture shows that the success rate decreases as the time of storage gets longer. There was no statistical difference between groups stored in the cell culture medium, milk, and saline for 2 and 4 days. However, the groups stored in milk and saline for 7 days showed dramatic decrease in success rate compared to the group stored in the cell culture medium. In conclusion, exfoliated or extracted deciduous teeth can be used to culture pulpal cells when they are stored in milk and saline for a certain period of time; however obtaining viable pulpal cells becomes harder as the storage time gets longer.

Evaluation of cytotoxicity and bone affinity on the surface of a titanium phosphide (Titanium Phosphide 표면에 대한 세포독성 및 골친화성의 평가)

  • Lee, Kang-Jin;Kim, Chun-Seok;Kim, Hyung-Soo;Yum, Chang-Yup;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.2
    • /
    • pp.329-346
    • /
    • 1997
  • Dental implants have been developed for enhancement of osseointegration. Biocompatibility, bone affinity and surface characteristics of dental implants are very important factors for osseointegration. The aim of the present study was to determine the cytotoxicity and the bone affinity of titanium phosphide(Ti-P) implant material. The Ti-P surface was obtained by vacuum sintering of titanium within compacted hydroxyapatite powder. The composition and the chemical change of the surface were determined by Auger electron spectroscopy. The in vitro cytotoxicity was evaluated by the viability of the bone cells and macrophages obtained from chicken embryo and rat,s peritonium, respectively. For the comparative evaluation, 316L stainless steel, commercially pure titanium and Ti-P materials, prepared in size of 1O.0mm in diameter and 5.0mm in height, were immersed separately in bone cells and macrophages for 10 days. For the evaluation of the in vivo bone affinity, 316L stainless steel, commercially pure titanium and Ti-P materials, prepared in size of 5.0mm in diameter and 10.0mm in length, were implanted after drilling in diameter 5.5mm in femurs of 2 dogs weighing 10Kg more or less. Six weeks after implantation the specimens were prepared for histopathological examination and were observed under light microscope. In comparison of in vitro bone cell viability, Ti-P and commercially pure titanium groups were not significantly different from control group (p>O.1), but 316L stainless steel group was significantly lower than control group(p<0.05). There was no statistical difference in the viability of macrophages between 3 different groups and control group(p>O.l). In comparison of in vivo study, 316L stainless steel and commercially pure titanium showed fibrous encapsulation, but Ti-P showed remarkable new bone formation without any fibrous tissue. The results demonstrate that Ti-P has favorable biocompatibility and bone affinity, and suggest that dental implants with Ti-P surface may enhance osseointegration.

  • PDF

Effects of Nicotine on the Expression of Cell Cycle Regulatory Proteins of Human Gingival Fibroblasts (니코틴이 치은섬유아세포의 세포주기 조절 단백질 발현에 미치는 영향)

  • Kim, Tak;Kim, Jae-ho;Pi, Sung-Hee;Kim, Eun-Cheol;You, Yong-Ouk;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.3
    • /
    • pp.597-610
    • /
    • 2001
  • Normal gingival fibroblasts functioning is fundamental for the maintenance of periodontal connective tissue as well as wound healing. Nicotine have been found to affect DNA synthesis and cell proliferation, which appear to depend on the type of cells. This in vitro study was done to determine the effects of nicotine, a major component of tobacco, on cell proliferation, viability, activity, cell cycle distribution, and expression of cell cycle regulatory proteins in human gingival fibroblasts. Nicotine has been tested for 2 days or 4 days in 5 different concentrations; $0.1{\mu}g/ml$; $1{\mu}g/ml$; $10{\mu}g/ml$; $100{\mu}g/ml$; $1000{\mu}g/ml$. To assess cell proliferation and viability, viable and non-viable cells were counted by hemocytometer; to evaluate cellular activity, MTT assay was employed; to analyze cell cycle distribution, fluorescent propidium iodide-DNA complex were measured using fluorocytometer; to determine the expression of cell cycle regulatory proteins, western blot analysis was performed. After 2 days and 4 days incubation respectively, at concentrations of $1{\mu}g/ml$ - $1000{\mu}g/ml$, nicotine significantly inhibited proliferation comparing to non-supplemented controls. The cell viability was significantly decreased after 2 days and 4 days at concentrations of $1{\mu}g/ml$ - $1000{\mu}g/ml$ and at $10{\mu}g/ml$ - $1000{\mu}g/ml$ respectively. After 2 days and 4 days, the cellular activity was significantly decreased at concentrations of $10{\mu}g/ml$ - $1000{\mu}g/ml$. Treatment with $100{\mu}g/ml$ nicotine for 48 hours caused an increase in the proportion of G1-phase cells (from 46.41% to 53.46%) and a decrease in the proportion of S-phase cells (from 17.80% to 14.27%). The levels of cyclin $D_1$ and CDK 4 proteins in nicotine-treated fibroblasts were lower than that of controls, whereas the levels of p16 and pRB were higher than that of controls. These results suggest that the decrease of cell proliferation and lengthened Gap phases (G1) by nicotine may due to the increased expression of p16 and pRB as well as decreased expression of cyclin $D_1$ and CDK 4 in human gingival fibroblasts.

  • PDF

Development of Acrylic Acid Grafted Polycaprolactone (PCL)/Biphasic Calcium Phosphate (BCP) Nanofibers for Bone Tissue Engineering Using Gamma-Irradiation (감마선을 이용한 아크릴산이 도입된 골조직공학용 PCL/BCP 나노섬유 지지체의 개발)

  • Jeong, Jin-Oh;Jeong, Sung In;Shin, Young Min;Park, Jong-Seok;Gwon, Hui-Jeong;An, Sung-Jun;Huh, Jung-Bo;Shin, Heungsoo;Lim, Youn-Mook
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.418-425
    • /
    • 2015
  • Polycaprolactone (PCL) and biphasic calcium phosphate (BCP) have been considered as useful materials for orthopedic devices and osseous implants because of their biocompatibility and bone-forming activity. However, PCL-based scaffolds have hydrophobic surfaces reducing initial cell adhesion or proliferation. To overcome the limitation, we fabricated surface-modified PCL/BCP nanofibers using gamma-irradiation for bone tissue engineering. PCL/BCP nanofibers were prepared by electrospinning and then we supplemented hydrophilicity by introducing acrylic acid (AAc) through gamma-irradiation. We confirmed the surface of nanofibers by SEM, and then the initial viability of MG63 was significantly increased on the AAc grafted nanofibers, and alkaline phosphatase activity($1.239{\pm}0.226nmole/{\mu}g/min$) improved on the modified nanofibers than that on the non-modified nanofibers($0.590{\pm}0.286nmole/{\mu}g/min$). Therefore, AAc-grafted nanofibers may be a good tool for bone tissue engineering applications.

Effects of Gwaruhaengryeon-hwan on COPD and Particulate Matter Induced Lung Injury on a Mouse Model (만성폐쇄성폐질환 및 미세먼지 유발 폐손상 동물모델에서 과루행련환의 효과)

  • Lee, Chul-wha;Yang, Won-kyung;Lyu, Yee-ran;Kim, Seung-hyeong;Park, Yang-chun
    • The Journal of Internal Korean Medicine
    • /
    • v.38 no.3
    • /
    • pp.353-366
    • /
    • 2017
  • Objective: This study aimed to use a mouse model to evaluate the effects of Gwaruhaengryeon-hwan (GHH) on chronic obstructive pulmonary disease (COPD) and particulate matter induced lung injury. Materials and Methods: The study was carried out in two ways (in vitro, in vivo). In vitro RAW 264.7 cells (mouse macrophage) were used and analyzed by flow cytometry, ELISA. In vivo lipopolysaccharide (LPS) and cigarette smoke solution (CSS), or coal, fly ash, diesel exhaust particle (CFD) challenged mice were used and its BALF was analyzed by ELISA, lung tissue by real-time PCR. Results: In vitro, GHH maintained an 80-100% rate of viability. So cytotoxicity was not shown. In the ELISA analysis with RAW 264.7 cells, GHH significantly decreased NO over $30{\mu}g/ml$. In the ELISA analysis, GHH significantly decreased $TNF-{\alpha}$, IL-6 over $300{\mu}g/ml$. In the COPD model, the GHH 200 mg/kg dosage group, the application of GHH significantly decreased the increasing of neutrophils, $TNF-{\alpha}$, IL-17A, MIP2, CXCL-1 in BALF, $TNF-{\alpha}$, $IL-1{\beta}$ mRNA expression in lung tissue and histological lung injury. In the CFD induced lung injury model, the GHH 200 mg/kg dosage group, the application of GHH significantly decreased the increase of neutrophils, $TNF-{\alpha}$, IL-17A, MIP2, CXCL-1 in BALF, MUC5AC, $TGF-{\beta}$ mRNA expression in lung tissue and histological lung injury. Conclusion: This study suggests the usability of GHH for COPD patients by controlling lung tissue injury.

Effects of SIS/PLGA Porous Scaffolds and Muscle-Derived Stem Cell on the Formation of Tissue Engineered Bone (SIS/PLGA 담체와 근육유래 줄기세포를 이용한 생체조직공학적 골재생)

  • Kim Soon Hee;Yun Sun Jung;Jang Ji Wook;Kim Moon Suk;Khang Gilson;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.14-21
    • /
    • 2006
  • Tissue engineering techniques require the use of a porous biodegradable/bioresorbable scaffold, which server as a three-dimensional template for initial cell attachment and subsequent tissue formation in both in vitro and in vivo. Small intestinal submucosa (SIS) has been investigated as a source of collagenous tissue with the potential to be used as biomaterials because of its inherent strength and biocompatibility. SIS-loaded poly(L-lactide-co-glicolide)(PLGA) scaffolds were prepared by solvent casting/particle leaching. Characterizations of SIS/PLGA scaffold were carried out by SEM, mercury porosimeter, and so on. Muscle-derived stem cells can be differentiated in culture into osteoblasts, chondrocytes, and even myoblasts by the controlling the culture environment. Cellular viability and proliferation were assayed by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium-bromide(MTT) test. Osteogenic differential cells were analyzed by alkaline phosphatase(ALP) activity. SIS/PLGA scaffolds were implanted into the back of athymic nude mouse to observe the effect of SIS on the osteoinduction compared with controlled PLGA scaffolds. Thin sections were cut from paraffin embedded tissues and histological sections were conducted hematoxylin and eosin (H&E), Trichrome, and von Kossa. We observed that bone formatioin of SIS/PLGA hybrid scaffold as natural/synthetic scaffold was better thean that of only PLGA scaffold. It canb be explained that SIS contains various kinds of bioactive molecules for osteoinduction.