Browse > Article
http://dx.doi.org/10.7317/pk.2015.39.3.418

Development of Acrylic Acid Grafted Polycaprolactone (PCL)/Biphasic Calcium Phosphate (BCP) Nanofibers for Bone Tissue Engineering Using Gamma-Irradiation  

Jeong, Jin-Oh (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Jeong, Sung In (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Shin, Young Min (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Park, Jong-Seok (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Gwon, Hui-Jeong (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
An, Sung-Jun (Jadam Co.)
Huh, Jung-Bo (Department of Prosthodontics, School of Dentistry, Pusan National University, Dental Research Institute)
Shin, Heungsoo (Department of Bioengineering, Division of Applied Chemical and Bio Engineering, Hanyang University)
Lim, Youn-Mook (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Publication Information
Polymer(Korea) / v.39, no.3, 2015 , pp. 418-425 More about this Journal
Abstract
Polycaprolactone (PCL) and biphasic calcium phosphate (BCP) have been considered as useful materials for orthopedic devices and osseous implants because of their biocompatibility and bone-forming activity. However, PCL-based scaffolds have hydrophobic surfaces reducing initial cell adhesion or proliferation. To overcome the limitation, we fabricated surface-modified PCL/BCP nanofibers using gamma-irradiation for bone tissue engineering. PCL/BCP nanofibers were prepared by electrospinning and then we supplemented hydrophilicity by introducing acrylic acid (AAc) through gamma-irradiation. We confirmed the surface of nanofibers by SEM, and then the initial viability of MG63 was significantly increased on the AAc grafted nanofibers, and alkaline phosphatase activity($1.239{\pm}0.226nmole/{\mu}g/min$) improved on the modified nanofibers than that on the non-modified nanofibers($0.590{\pm}0.286nmole/{\mu}g/min$). Therefore, AAc-grafted nanofibers may be a good tool for bone tissue engineering applications.
Keywords
polycaprolactone; biphasic calcium phosphate; electrospinning; gamma-irradiation; acrylic acid; bone tissue engineering;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 G B. Park, J. W. Park, H. W. An, D. J. Yang, S. K. Choi, I. S. Jang, S. I. Yeo, and J. Y. Seo, J Korean Acad. Periodontol., 36, 797 (2006).   DOI
2 M. S. K. Chong, C. N. Lee, and S. H. Teoh, Mater. Sci. Eng., C, 27, 309 (2007).   DOI   ScienceOn
3 Z. Ma, C. Gao, Y. Gong, and J. Shen, Biomaterials, 26, 1253 (2005).   DOI   ScienceOn
4 G. E. Park, M. A. Pattison, K. Park, and T. J. Webster, Biomaterials, 26, 3075 (2005).   DOI   ScienceOn
5 J. M. Williams, A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, and S. Das, Biomaterials, 26, 4817 (2005).   DOI   ScienceOn
6 Y. Lei, B. Rai, K. H. Ho, and S. H. Teoh, Mater. Sci. Eng., C, 27, 293 (2007).   DOI   ScienceOn
7 B. Y. Tay, S. X. Zhang, M. H. Myint, F. L. Ng, M. Chandrasekaran, and L. K. A. Tan, J. Mater. Proc. Tech., 182, 117 (2007).   DOI   ScienceOn
8 K.-J. Wu, C.-S. Wu, and J.-S. Chang, Proc. Biochem., 42, 669 (2007).   DOI   ScienceOn
9 Y. M. Shin, J. S. Park, S. I. Jeong, S. J. An, H. J. Gwon, Y. M. Lim, Y. C. Nho, and C. Y. Kim, Biotechnol. Bioproc. Eng., 19, 341 (2014).   DOI   ScienceOn
10 I. Manjubala and M. Sivakumar, Mater. Chem. Phys., 71, 272 (2001).   DOI   ScienceOn
11 Y. Li, W. Weng, and K. C. Tam, Acta Biomater., 3, 251 (2007).   DOI   ScienceOn
12 C. Shuai, P. Feng, C. Cao, and S. Peng, Biotechnol. Bioproc. Eng., 18, 520 (2013).   DOI
13 C. Mangano, E. Bartolucci, and C. Mazzocco, Clin Oral Implants Res., 18, 23 (2003).
14 R. Langer and J. P. Vacanti, Science, 260, 920 (1993).   DOI
15 B. S. Kim and D. J. Mooney, TIBTECH, 16, 224 (1998).   DOI   ScienceOn
16 M. S. Bae, S. I. Jeong, S. E. Kim, J. B. Lee, D. N. Heo, and I. K. Kwon, Tissue Eng. Regen. Med., 5, 196 (2008).
17 I. K. Kwon, S. Kidoaki, and T. Matsuda, Biomaterials, 26, 3929 (2005).   DOI   ScienceOn
18 Z. Shahrooz and H. A. Vahid, Iran Polym., 19, 457 (2010).
19 Z. Chen, X. Mo, and F. Qing, Mater. Len., 61, 3490 (2007).   DOI   ScienceOn
20 K. Ma, C. K. Chan, S. Liao, W. Y. K. Hwang, Q. Feng, and S. Ramakrishna, Biomaterials, 29, 2096 (2008).   DOI   ScienceOn
21 T. G. Kim and T. G. Park, Tissue Eng., 12, 221 (2006).   DOI   ScienceOn
22 H. S. Yang, K. Park, J. J. Kim, B. S. Kim, and D. K. Han, Tissue Eng. Regen. Med., 5, 498 (2008).
23 L. Grondahl, A. Chandler-Temple, and M. Trau, Biomacromolecules, 6, 2197 (2005).   DOI   ScienceOn
24 J. Choi, H. J. Jung, B. J. Park, Y. K. Joung, K. Park, and D. K. Han, Polym. Korea, 36. 357 (2011).
25 J. Y. Lim, Y. M. Shin, J. B. Choi, J. O. Jeong, H. J. Gwon, S. I. Jeong, J. S. Park, and Y. M. Lim, Journal of Radiation Industry, 7, 45 (2013).
26 Y. M. Shin, W. J. Kim, J. S. Park, H. J. Gwon, Y. C. Nho, and Y. M. Lim, Journal of Radiation Industry, 5, 371 (2011).
27 H. A. Kim, J. S. Park, J. B. Choi, Y. M. Lim, and Y. C. Nho, Polym. Korea, 36, 71 (2011).
28 J. B. Choi, S. I. Jeong, H. J. Gwon, J. S. Park, Y. C. Nho, Y. H. Choi, K. J. Park, M. Y. Park, H. Shin, and Y. M. Lim, Journal of Radiation Industry, 6, 159 (2012).
29 Y. M. Shin, K. S. Kim, Y. M. Lim, Y. C. Nho, and H. Shin, Biomacromolecules, 9, 1772 (2008).   DOI   ScienceOn
30 Y. M. Shin, J. Y. Lim, J. S. Park, H. J. Gwon, S. I. Jeong, and Y. M. Lim, Biotechnol. Bioproc. Eng., 19, 118 (2014).   DOI   ScienceOn
31 S. Y. Jo, M. H. Youn, Y. M. Lim, H. J. Gwon, J. S. Park, and Y. C. Nho, Journal of Radiation Industry, 4, 147 (2010).
32 A. Saadat, A. Behnamghader, S. Karbasi, D. Abedi, M. Soleimani, and A. Shafiee, Biotechnol. Bioproc. Eng., 18, 587 (2013).   DOI