• Title/Summary/Keyword: Tissue specificity

Search Result 253, Processing Time 0.028 seconds

Evaluation of Eye Irritation Potential of Solid Substance with New 3D Reconstructed Human Cornea Model, MCTT HCETM

  • Jang, Won-hee;Jung, Kyoung-mi;Yang, Hye-ri;Lee, Miri;Jung, Haeng-Sun;Lee, Su-Hyon;Park, Miyoung;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • v.23 no.4
    • /
    • pp.379-385
    • /
    • 2015
  • The eye irritation potential of drug candidates or pharmaceutical ingredients should be evaluated if there is a possibility of ocular exposure. Traditionally, the ocular irritation has been evaluated by the rabbit Draize test. However, rabbit eyes are more sensitive to irritants than human eyes, therefore substantial level of false positives are unavoidable. To resolve this species difference, several three-dimensional human corneal epithelial (HCE) models have been developed as alternative eye irritation test methods. Recently, we introduced a new HCE model, MCTT HCE$^{TM}$ which is reconstructed with non-transformed human corneal cells from limbal tissues. Here, we examined if MCTT HCE$^{TM}$ can be employed to evaluate eye irritation potential of solid substances. Through optimization of washing method and exposure time, treatment time was established as 10 min and washing procedure was set up as 4 times of washing with 10 mL of PBS and shaking in 30 mL of PBS in a beaker. With the established eye irritation test protocol, 11 solid substances (5 non-irritants, 6 irritants) were evaluated which demonstrated an excellent predictive capacity (100% accuracy, 100% specificity and 100% sensitivity). We also compared the performance of our test method with rabbit Draize test results and in vitro cytotoxicity test with 2D human corneal epithelial cell lines.

Validation of a Real-Time RT-PCR Method to Quantify Newcastle Disease Virus (NDV) Titer and Comparison with Other Quantifiable Methods

  • Jang, Juno;Hong, Sung-Hwan;Kim, Ik-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.100-108
    • /
    • 2011
  • A method for the rapid detection and quantification of Newcastle disease virus (NDV) produced in an animal cell culture-based production system was developed to enhance the speed of the NDV vaccine manufacturing process. A SYBR Green I-based real-time RT-PCR was designed with a conventional, inexpensive RT-PCR kit targeting the F gene of the NDV LaSota strain. The method developed in this study was validated for specificity, accuracy, precision, linearity, limit of detection (LOD), limit of quantification (LOQ), and robustness. The validation results satisfied the predetermined acceptance criteria. The validated method was used to quantify virus samples produced in an animal cell culture-based production system. The method was able to quantify the NDV samples from mid- or late-production phases, but not effective on samples from the early-production phase. For comparison with other quantifiable methods, immunoblotting, plaque assay, and tissue culture infectious dose 50 ($TCID_{50}$) assay were also performed with the NDV samples. The results demonstrated that the real-time RT-PCR method is suitable for the rapid quantification of virus particles produced in an animal cell-culture-based production system irrespective of viral infectivity.

Study of Joint Histogram Based Statistical Features for Early Detection of Lung Disease (폐질환 조기 검출을 위한 결합 히스토그램 기반의 통계적 특징 인자에 대한 연구)

  • Won, Chul-ho
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.4
    • /
    • pp.259-265
    • /
    • 2016
  • In this paper, new method was proposed to classify lung tissues such as Broncho vascular, Emphysema, Ground Glass Reticular, Ground Glass, Honeycomb, Normal for early lung disease detection. 459 Statistical features was extraced from joint histogram matrix based on multi resolution analysis, volumetric LBP, and CT intensity, then dominant features was selected by using adaboost learning. Accuracy of proposed features and 3D AMFM was 90.1% and 85.3%, respectively. Proposed joint histogram based features shows better classification result than 3D AMFM in terms of accuracy, sensitivity, and specificity.

Demonstration of TCM-9 Monoclonal Antibody in Follicular Neoplasm of Thyroid (갑상선의 여포상 종양의 감별에 있어서 TCM-9의 발현양상)

  • Kim, Yun-Jung;Shim, Jung-Weon;Ahn, Hye-Kyung;Park, Young-Euy
    • The Korean Journal of Cytopathology
    • /
    • v.7 no.2
    • /
    • pp.134-137
    • /
    • 1996
  • Monoclonal antibody(TCM-9) against human thyroid cancers have been studied by screening with human thyroid cancers, normal and benign thyroid tissue, and normal human serum protein. A monoclonal antibody(TCM-9) that is known to have strong specificity for human thyroid cancer but not for Graves' disease, adenoma or normal thyroid does not bind to native or mature human thyroglobulin(Tg). We used to TCM-9 antibody by immunohistochemical staining on 5 follicular cancer, 2 follicular adenoma, 1 follicular neoplasm with suspicious invasion, 2 papillary cancer to ascertain being of help in differentiation between follicular carcinoma and adenoma. Reactivity of TCM-9 was observed in follicular carcinoma and papillary carcinoma but not observed in follicular adenoma. Thus TCM-9 is a novel monoclonal antibody against the thyroid cancer.

  • PDF

Plants as platforms for the production of vaccine antigens (항원 생산 기반으로서의 식물 연구)

  • Youm, Jung-Won;Jeon, Jae-Heung;Joung, Hyouk;Kim, Hyun-Soon
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.250-261
    • /
    • 2010
  • The expression of vaccine antigens in transgenic plants has the potential to provide a convenient, stable, safe approach for oral vaccination alternative to traditional parenteral vaccines. Over the past two decades, many different vaccine antigens expressed via the plant nuclear genome have elicited appropriate immunoglobulin responses and have conferred protection upon oral delivery. Up to date, efforts to produce antigen proteins in plants have focused on potato, tobacco, tomato, banana, and seed (maize, rice, soybean, etc). The choice of promoters affects transgene transcription, resulting in changes not only in concentration, but also in the stage tissue and cell specificity of its expression. Inclusion of mucosal adjuvants during immunization with the vaccine antigen has been an important step towards the success of plant-derived vaccines. In animal and Phase I clinical trials several plant-derived vaccine antigens have been found to be safe and induce sufficiently high immune response. Future areas of research should further characterize the induction of the mucosal immune response and appropriate dosage for delivery system of animal and human vaccines. This article reviews the current status of development in the area of the use of plant for the development of oral vaccines.

Molecular cloning and expression of glyceraldehyde-3-phosphate dehydrogenase gene under environmental stresses in sweetpotato

  • Kim, Young-Hwa;Song, Young-Sun;Huh, Gyung-Hye
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.95-100
    • /
    • 2008
  • Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a main enzyme in the glycolytic pathway, is involved in cellular energy production and regarded as a housekeeping gene. Previously, cytosolic GAPDH was selected as the most significantly abundant gene in EST library of sweetpotato suspension cells. In this study, a full-length of cDNA clone (IbGAPDH) encoding GAPDH was isolated from suspension-cultured cells of sweetpotato (Ipomoea babatas), and its expression was investigated with a view to understanding the physiological function of GAPDH in relation to environmental stresses. IbGAPDH encoded a 36.9 kDa polypeptide consisting of 337 amino acids. When the deduced amino acid of IbGAPDH was compared with other higher plants, IbGAPDH showed high homology with cytosolic GAPDH. The mRNA level of IbGAPDH significantly increased under environmental stresses, such as $H_2O_2$, MV and cold treatments. Among them, the transcript level of IbGAPDH gene was the highest under cold stress. Further investigation of the transcription level under $10^{\circ}C$ or $15^{\circ}C$ was performed with different tissues of sweetpotato. The transcription of IbGAPDH was increased by cold stress with tissue-specificity, moreover, showed different patterns according to temperature.

Expression of Human Lactoferrin in the Mammary Glands of Transgenic Mice using Regulatory Elements of Rat $\beta$-Casein Gene (흰쥐 베타-카제인 유전자의 발현조절 부위를 이용하여 유선에서 사람 락토페린을 발현하는 형질전환 생쥐의 개발)

  • 김선정;이고운;배수경;조용연;한용만;이철상;이경광;유대열
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.2
    • /
    • pp.133-139
    • /
    • 1994
  • Two human lactoferrin expression vectors(pCChcLf and pCChcLf-1) were constructed using rat $\beta$-casein gene and human lactoferrin cDNA. The recombinant DNAs containing human lactoferrin cDNA were microinjected into the fertilized eggs of hybrid mice (BDF1 : C57BL$\times$DBA) and the DNA-injected eggs were treansferred into the oviducts of foster mothers. Genomic DNAs were isolated from the tails of mice born from the microinjected eggs and analyzed by Southern blot analysis. As a result, 5 and 9 transgenic mice with CChcLf and CChcLf-1 gene were produced, respectively. To determine tissue-specificity of transgene expression, Northern blot analysis was performed. Female transgenic mice were killed at day 10 of lactation and total RNAs from various tissues were isolated. Based on Northern blot analysis, it was shown that transgene was mainly expressed in the mammary glands of transgenic mice. In addition, the human lactoferrin in milk was detected by enzyme-linked immunosorbent assay. For this study, milk was obtained from the mammary glands of the transgenic mice at day 10 of lactation. In line #2 of CChcLf and line #7 of CChcLf-1 transgenic mice, human lactoferrin was secreted into the milk at concentration levels of 340ng/ml and 60ng/ml, respectively.

  • PDF

Breast Mass Classification using the Fundamental Deep Learning Approach: To build the optimal model applying various methods that influence the performance of CNN

  • Lee, Jin;Choi, Kwang Jong;Kim, Seong Jung;Oh, Ji Eun;Yoon, Woong Bae;Kim, Kwang Gi
    • Journal of Multimedia Information System
    • /
    • v.3 no.3
    • /
    • pp.97-102
    • /
    • 2016
  • Deep learning enables machines to have perception and can potentially outperform humans in the medical field. It can save a lot of time and reduce human error by detecting certain patterns from medical images without being trained. The main goal of this paper is to build the optimal model for breast mass classification by applying various methods that influence the performance of Convolutional Neural Network (CNN). Google's newly developed software library Tensorflow was used to build CNN and the mammogram dataset used in this study was obtained from 340 breast cancer cases. The best classification performance we achieved was an accuracy of 0.887, sensitivity of 0.903, and specificity of 0.869 for normal tissue versus malignant mass classification with augmented data, more convolutional filters, and ADAM optimizer. A limitation of this method, however, was that it only considered malignant masses which are relatively easier to classify than benign masses. Therefore, further studies are required in order to properly classify any given data for medical uses.

Structure and Expression of a Perilla (Perilla frutescens Britt) Gene, PfFAD3, Encoding the Microsomal ${\omega}-3$ Fatty Acid Desaturase

  • Lee, Hyang-Hwa;Pyee, Jae-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.5
    • /
    • pp.424-427
    • /
    • 2004
  • Microsomal ${\omega}-3$ fatty acid desaturase (FAD3) is an essential enzyme in the production of the n-3 polyunsaturated fatty acid ${\alpha}-linolenic$ acid during the seed developing stage. To understand the regulatory mechanism of the gene encoding the ${\omega}-3$ fatty acid desaturase, a genomic fragment corresponding to the previously isolated perilla seed PfFAD3 cDNA was amplified from perilla (Perilla frutescens Britt) by GenomeWalker PCR. Sequence analysis of the fragment provided with identification of a 1485-bp 5'-upstream region and a 241-bp intron in the open reading frame. To determine the tissue-specificity of the PfFAD3 gene expression, the 5'-upstream region was fused to the ${\beta}-glucuronidase$ (GUS) gene and incorporated into Arabidopsis thaliana. Histochemical assay of the transgenic plants showed that GUS expression was restricted to seed and pollen, showing that PfFAD3 gene was exclusively expressed in those tissues.

Clinicopathologic and Diagnostic Significance of p53 Protein Expression in Papillary Thyroid Carcinoma

  • Shin, Mi Kyung;Kim, Jeong Won
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2341-2344
    • /
    • 2014
  • Background: p53 protein expression has been detected immunohistochemically in papillary thyroid carcinoma(PTC). We investigated the relations between its expression and clinicopathologic features and its significance as a diagnostic marker. Materials and Methods: We compared and evaluated 93 patients in whom thyroidectomy with lymph node dissection had been performed to treat PTC for clinicopathologic significance and 102 patients with 23 papillary thyroid overt carcinomas (POC), 57 papillary thyroid microcarcinomas(PMC), 5 follicular adenomas (FA), 5 Hashimoto's thyroiditis (HT) and 12 nodular hyperplasias (NH) for significance as a diagnostic marker. Expression of p53 protein was evaluated immunohistochemically in sections of paraffinembedded tissue. Results: Statistical analysis showed significantly different expression of p53 in PTC versus other benign thyroid lesions (BTL).The diagnostic sensitivity and specificity were 85.0% and 72.7%, respectively. Overexpression of p53 protein was observed in 44 of the 93 PTC cases (47.3%), but no significant correlation between p53 protein overexpression and clinicopathologic features (age, size, multiplicity, lymph node metastasis, extrathyroidal extension and vascular invasion) was noted. Conclusions: p53 is valuable to distinguish PTC from other BTL, but there is no correlation between p53 protein overexpression and clinicopathologic features.