• Title/Summary/Keyword: Tissue specific

Search Result 1,616, Processing Time 0.038 seconds

Characterization of a non-specific Lipid Transfer Protein (ns-LTP) promoter from poplar (Populus alba × P. glandulosa) (현사시나무(Populus alba × P. glandulosa)에서 분리한 non-specific Lipid Transfer Protein (ns-LTP) 프로모터의 특성 분석)

  • Cho, Jin-Seong;Noh, Seol Ah;Choi, Young-Im
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.356-363
    • /
    • 2015
  • In order to study genetic engineering in trees, the characterization of genes and promoters from trees is necessary. We isolated the promoter region (867 bp) of Pagns-LTP from poplar (P. alba ${\times}$ P. glandulosa) and characterized its activity in transgenic poplar plants using a ${\beta}$-glucuronidase (GUS) reporter gene. High-level expression of the Pagns-LTP transcript was found in poplar roots, while comparatively low-level expression was found in the young leaves. Pagns-LTP mRNA was not detected in other poplar tissues. Additionally, transgenic poplar plants that contained a Pagns-LTP promoter fused to a GUS reporter gene, displayed tissue-specific GUS enzyme activity localized in root tissue. In silico analysis of the Pagns-LTP promoter sequence reveals the presence of several cis-regulatory elements responsive to phytohormones, biotic and abiotic stresses, as well as those regulating tissue-specific expression. These results demonstrate that the Pagns-LTP promoter has tissue-specific expression activity in poplar roots and leaves that may be involved in organ development and plant resistance to various stresses. Therefore, we anticipate that the Pagns-LTP promoter would be a useful tool to genetically optimize woody plants for functional genomics.

Development of Korean Tissue Probability Map from 3D Magnetic Resonance Images (3차원 MR 영상으로부터의 한국인 뇌조직확률지도 개발)

  • Jung Hyun, Kim;Jong-Min, Lee;Uicheul, Yoon;Hyun-Pil, Kim;Bang Bon, Koo;In Young, Kim;Dong Soo, Lee;Jun Soo, Kwon;Sun I., Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.323-328
    • /
    • 2004
  • The development of group-specific tissue probability maps (TPM) provides a priori knowledge for better result of cerebral tissue classification with regard to the inter-ethnic differences of inter-subject variability. We present sequential procedures of group-specific TPM and evaluate the age effects in the structural differences of TPM. We investigated 100 healthy volunteers with high resolution MRI scalming. The subjects were classified into young (60, 25.92+4.58) and old groups (40, 58.83${\pm}$8.10) according to the age. To avoid any bias from random selected single subject and improve registration robustness, average atlas as target for TPM was constructed from skull-stripped whole data using linear and nonlinear registration of AIR. Each subject was segmented into binary images of gray matter, white matter, and cerebrospinal fluid using fuzzy clustering and normalized into the space of average atlas. The probability images were the means of these binary images, and contained values in the range of zero to one. A TPM of a given tissue is a spatial probability distribution representing a certain subject population. In the spatial distribution of tissue probability according to the threshold of probability, the old group exhibited enlarged ventricles and overall GM atrophy as age-specific changes, compared to the young group. Our results are generally consistent with the few published studies on age differences in the brain morphology. The more similar the morphology of the subject is to the average of the population represented by the TPM, the better the entire classification procedure should work. Therefore, we suggest that group-specific TPM should be used as a priori information for the cerebral tissue classification.

Chondrogenesis of Mesenchymal Stem Cell Derived form Canine Adipose Tissue

  • Lee, Byung-Joo;Wang, Soo-Geun;Seo, Cheol-Ju;Lee, Jin-Chun;Jung, Jin-Sup;Lee, Ryang-Hwa
    • Proceedings of the KSLP Conference
    • /
    • 2003.11a
    • /
    • pp.183-183
    • /
    • 2003
  • Background and Objectives : Cartilage reconstruction is one of medical issue in otolaryngology. Tissue engineering is presently being utilized in part of cartilage repair. Sources of cells for tissue engineering are chondrocyte from mature cartilage and bone marrow mesenchymal stem cells that are able to differentiate into chondrocyte. Recent studies have shown that adipose tissue have mesenchymal stem cells which can differentiate into adipogenic, chondrogenic myogenic osteogenic cells and neural cell in vitro. In this study, we have examined chondrogenic potential of the canine adipose tissue-derived mesenchymal stem cell(ATSC). Materials and Methods : We harvested canine adipose tissue from inguinal area. ATSCs were enzymatically released from canine adipose tissue. Under appropriate culture conditions, ATSCs were induced to differentiate into the chondrocyte lineages using micromass culture technique. We used immunostain to type II collagen and toluidine blue stain to confirm chondrogenic differentiation of ATSCs. Results : We could isolate ATSCs from canine adipose tissue. ATSCs expressed CD29 and CD44 which are specific surface markers of mesenchymal stem cell. ATSCs differentiated into micromass that has positive response to immunostain of type II collagen and toluidine blue stain. Conclusion : In vitro, ATSCs differentiated into cells that have characteristic cartilage matrix molecules in the presence of lineage-specific induction factors. Adipose tissue may represent an alternative source to bone marrow-derived MSCs.

  • PDF

Metabolic Signaling by Adipose Tissue Hormones in Obesity (비만에서 adipose tissue 호르몬에 의한 metabolic signaling)

  • Younghoon Jang
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.287-294
    • /
    • 2023
  • Healthy adipose tissue is critical for preventing obesity by maintaining metabolic homeostasis. Adipose tissue plays an important role in energy homeostasis through glucose and lipid metabolism. Depending on nutritional status, adipose tissue expands to store lipids or can be consumed by lipolysis. The role of adipose tissue as an endocrine organ is emerging, and many studies have reported that there are various adipose tissue hormones that communicate with other organs and tissues through metabolic signaling. For example, leptin, a representative peptide hormone secreted from adipose tissues (adipokine), circulates and targets the central nervous system of the brain for appetite regression. Furthermore, adipocytes secrete inflammatory cytokines to target immune cells in adipose tissues. Not surprisingly, adipocytes can secrete fatty acid-derived hormones (lipokine) that bind to their specific receptors for paracrine and endocrine action. To understand organ crosstalk by adipose tissue hor- mones, specific metabolic signaling in adipocytes and other communicating cells should be defined. The dysfunction of metabolic signaling in adipocytes occurs in unhealthy adipose tissue in overweight and obese conditions. Therapy targeting novel adipose metabolic signaling could potentially lead to the development of an effective anti-obesity drug. This review summarizes the latest updates on adipose tissue hormone and metabolic signaling in terms of obesity and metabolic diseases.

Tissue Specific Expression of Tomato Phenylalanine Ammonia-lyase Gene in Transgenic Tobacco Plants (형질전환 담배에서 토마토 PAL유전자의 조직 특이적 발현)

  • YI, Jung-Yoon;Lee, Shin-Woo;SEO, Hyo-Won;PARK, Kuen-Woo
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.2
    • /
    • pp.89-93
    • /
    • 1998
  • Tomato phenylalanine ammonia-lyase 5 (tPAL5) was identified that alternate initiation sites were utilized differentially in response to environmental stimuli (Lee et al, 1992b). In this study, we tried to look into tissue -or cell- specific expression pattern of tPAL5 gene by fusing with ${\beta}-glucuronidase$ (GUS) gene in transgenic tobacco plants. In transgenic plants, root and stem extracts contained 8~12 fold higher levels of GUS activity than petiole or leaf tissue while the highest levels of induction was observed from leaf tissue by mechanical wounding (5~11 fold). In trans-sections of stems and petioles, GUS activity was restricted to phloem cells(outer region) of developing vascular bundle and mainly at apical tip region in the root tissues. The levels of GUS activity was drastically reduced (10~12 fold reduction) when the 5'-upstream region of tPAL5 gene (-1151bp from ATG codon) was deleted up to -665. The levels of GUS expression, however, raised up by 6~8 fold when deleted up to -455. Therefore, we conclude that there are positive cis-elements at the region -1151 to -1008 and at -455 to -195 while the negative cis-element is at -1008 to -455.

  • PDF

Cartilage tissue engineering for craniofacial reconstruction

  • Kim, Min-Sook;Kim, Hyung-Kyu;Kim, Deok-Woo
    • Archives of Plastic Surgery
    • /
    • v.47 no.5
    • /
    • pp.392-403
    • /
    • 2020
  • Severe cartilage defects and congenital anomalies affect millions of people and involve considerable medical expenses. Tissue engineering offers many advantages over conventional treatments, as therapy can be tailored to specific defects using abundant bioengineered resources. This article introduces the basic concepts of cartilage tissue engineering and reviews recent progress in the field, with a focus on craniofacial reconstruction and facial aesthetics. The basic concepts of tissue engineering consist of cells, scaffolds, and stimuli. Generally, the cartilage tissue engineering process includes the following steps: harvesting autologous chondrogenic cells, cell expansion, redifferentiation, in vitro incubation with a scaffold, and transfer to patients. Despite the promising prospects of cartilage tissue engineering, problems and challenges still exist due to certain limitations. The limited proliferation of chondrocytes and their tendency to dedifferentiate necessitate further developments in stem cell technology and chondrocyte molecular biology. Progress should be made in designing fully biocompatible scaffolds with a minimal immune response to regenerate tissue effectively

Tissue-Specific Expression of Nebulin Isoform Proteins in Chicken (닭 조직에 따른 Nebulin Isoform 단백질의 특이적 발현)

  • 김영희;김정락
    • Biomedical Science Letters
    • /
    • v.6 no.3
    • /
    • pp.171-179
    • /
    • 2000
  • The lengths of thick and thin filaments in the sarcomeres of most vertebrate skeletal muscles are precisely regulated and are important structural parameters in understanding muscle contraction. Nebulin is a usually large protein that spans the whole length of thin filaments in the sarcomeres of skeletal muscles. In this paper we used SDS-PAGE and immunoblot to identify nebulin isoform proteins in muscle and non-muscle tissues. We prepared embryonic chicken tissues including skeletal muscle, cardiac muscle, smooth muscle, brain, liver to compare nebulin isoform proteins. The proteins were divided into soluble and insoluble fraction. As a result, we identified tissue specific expression of various nebulin isoform proteins in muscle and non-muscle tissues of chicken. Nebulin was detected in skeletal muscle of adult chicken about 500 kDa. Nebulett was expressed in cardiac muscle of embryonic and adult chicken about 107 kDa. A giant protein with molecular mass of about 380 kDa was identified in brain of non-muscle of chicken. This giant protein was detected in the soluble fraction of chicken embryo. The unequal distribution of the nebulin isoform proteins suggests tissue specific regulation of the isoform expression and indicates a functional specialization of the encoded isoform subtypes.

  • PDF

Effect of Viral Enhancers on the Tissue-Specific Expression of Bovine Growth Hormone Gene (소성장호르몬 유전자의 조직 특이성 발현에 미치는 바이러스 engancer의 영향)

  • 박계윤;김수미;노정혜
    • Korean Journal of Microbiology
    • /
    • v.27 no.2
    • /
    • pp.85-91
    • /
    • 1989
  • The effect of SV40 and murine cytomegalovirus (MCMV) enhancers on the general and tissue-specific gene expression was investigated. Recombinant plasmids containing these transcriptional engancers downstream of a structural gene for chloramphenicol acetyl transferase (CAT) were constructed. The transient expression of CAT gene from these plasmids was measured in monkey (CV1PD) and HeLa cells. Both SV40 and MCMV engancers activated the expression of CAT gene by more than 20 and 150 folds, respectively, compared with engancerless plasmids. When the SV40 promoter, upstream of CAT gene, was replaced with 2.2 kbp of promoter regulatory region of bovine growth hormone (bGH) gene, there was no expression of CAT even in the presence of enhancers, reflecting the tissue-specific expression of bGH genes. However, when the bGH regulatory region was shortened to 230 bp, the expression level increased dramatically in the presence of SV40 enhancers. In contrast, the expression from the shortened promoter was only marginally activated by the stronger MCMV enhancer.

  • PDF

Study on DNase activity specific from Haemonchus contortus reproductive tissue (염전위충(Haemonchus contortus) 생식기관의 DNase활성에 관한 연구)

  • Kwak, Dongmi
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.3
    • /
    • pp.441-448
    • /
    • 2004
  • DNase activity in Haemonchus contortus reproductive tissue was characterized and compared to that in whole worm. DNase activity in reproductive tissue was detected throughout pHs 4-10 with high activity under acidic conditions. The activity was not inhibited by 10 mM EDTA at pH 5.0, but largely inhibited by pH 7.0. The activity produced DNA fragments with mixtures of 3'-hydroxyls (OH) and 3'- phosphates (P) at each pH. Three distinct DNase activities were identified and had $M_rs$ of 34, 36 and 38.5 kDa in zymograms, which were distinguished according to pH requirement and sensitivity to EDTA. Among them, the 36 kDa reproductive tissue DNase had predominant activity at pH 5.0, but very weak at pH 7.0, and this activity was not inhibited by EDTA at pH 5.0. These characteristics of the 36 kDa reproductive tissue DNase resemble those of classic acidic DNases. In contrast, 36 kDa whole worm DNase activity had high activity at both pH 5.0 and 7.0. While the 36 kDa DNase activity at pH 5.0 was similar in both reproductive tissue and whole worm samples, the activity at pH 7.0 was predominantly detected in whole worm sample. This suggests that the 36 kDa whole worm DNase at pH 5.0 differs from that at pH 7.0. Thus, results indicate that the EDTA-insensitive 36 kDa DNase at pH 5.0 is specific for H. contortus reproductive tissue.

A Survey on the Complications Associated with Acupotomy in a Single Korean Medicine Clinic (일개한의의료기관에서 시행한 침도치료 시술 후 이상반응에 대한 설문조사)

  • Jung, Sehun;Woo, Jongwon;Chae, Hyocheong;Oh, Kichang;Choi, Soyoun;Lee, Joohyun;Kang, Kyungho;Chu, Hongmin;Ryu, Myungseok
    • Korean Journal of Acupuncture
    • /
    • v.37 no.4
    • /
    • pp.253-261
    • /
    • 2020
  • Objectives : This study aimed to evaluate adverse outcome associated with acupotomy and compare it with that of acupuncture. Methods : We retrospectively analyzed the chart records of 71 patients who received acupotomy at Daemyung Korean medical clinic from January 7, 2020 to March 6, 2020. We divided the acupotomy treatment area into 10, including the head, hand, chest, knees, shoulders, low back, neck, upper extremities, thighs, and feet. Furthermore, we investigated the adverse effect of acupotomy on those areas after treatment. Data were analyzed using descriptive statistics, and frequency analysis. Results : 'Bruise of specific region' accounted for the largest portion with 29 cases, followed by 24 cases of 'feeling tired and sleepy' and 17 cases of 'itch'. There were 16 cases of 'sustained pain' at the area of treatment, 11 cases of 'fatigue', 5 cases of 'swelling', 5 cases of 'dizziness', 4 cases of 'hematoma'. There were 3 cases of 'vertigo' and 2 cases of 'parathesia' and 'wide bruises', 'headache', 'gastric discomfort', 'bleeding', and 'skin rash' each. There was one case each that experienced 'unclear pronunciation', 'nausea', 'abnormal sweating', 'vomiting' and 'emotional/psychological reactions'. Conclusions : Adverse outcomes associated with acupotomy were mostly 'bruise of specific region', 'feeling tired and sleepy', 'itch', 'sustatained pain', and 'fatigue'. However, no adverse outcome or irreversible damage that have a serious effect on the body were observed.