• Title/Summary/Keyword: Tissue plasminogen activator

Search Result 110, Processing Time 0.032 seconds

Mutation of Angiogenesis Inhibitor TK1-2 to Avoid Antigenicity In Vivo

  • Lee Sang-Bae;Kim Hyun-Kyung;Oh Ho-Kyun;Hong Yong-Kil;Joe Young-Ae
    • Biomolecules & Therapeutics
    • /
    • v.14 no.1
    • /
    • pp.30-35
    • /
    • 2006
  • Tissue-type plasminogen activator (t-PA) is a multidomain serine protease containing two kringle domains, TK1-2. Previously, Pichia-derived recombinant human TK1-2 has been reported as an angiogenesis inhibitor although t-PA plays an important role in endothelial and tumor cell invasion. In this work, in order to improve in vivo efficacy of TK1-2 through elimination of immune reactivity, we mutated wild type TK1-2 into non-glycosylated form (NE-TK1-2) and examined whether it retains anti-angiogenic activity. The plasmid expressing NE-TK1-2 was constructed by replacing $Asn^{l17}\;and\;Asn^{184}$ with glutamic acid residues. After expression in Pichia pastoris, the secreted protein was purified from the culture broth using S-sepharose and UNO S1-FPLC column. The mass spectrum of NE-TK1-2 showed closely neighboring two peaks, 19631.87 and 19,835.44 Da, and it migrated as one band in SDS-PAGE. The patterns of CD-spectra of these two proteins were almost identical. Functionally, purified NE-TK1-2 was shown to inhibit endothelial cell migration in response to bFGF stimulation at the almost same level as wild type TK1-2. Therefore, the results suggest that non-glycosylated NETK1-2 can be developed as an effective anti-angiogenic and anti-tumor agent devoid of immune reactivity.

The Significance of Plasma Urokinase-type Plasminogen Activator and Type 1 Plasminogen Activator Inhibitor in Lung Cancer (폐암에서 혈장 Urokinase-Type Plasminogen Activator 및 Type 1 Plasminogen Activator Inhibitor의 의의)

  • Park, Kwang-Joo;Kim, Hyung-Jung;Ahn, Chul-Min;Lee, Doo-Yun;Chang, Joon;Kim, Sung-Kyu;Lee, Won-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.3
    • /
    • pp.516-524
    • /
    • 1997
  • Background : Cancer invasion and metastasis require the dissolution of the extracellular matrix in which several proteolytic enzymes are involved. One of these enzymes is the urokinase-type plasminogen activator(u-PA), and plasminogen activator inhibitors(PAI-1, PAI-2) also have a possible role in cancer invasion and metastasis by protection of cancer itself from proteolysis by u-PA. It has been reported that the levels of u-PA and plasminogen activator inhibitors in various cancer tissues are significantly higher than those in normal tissues and have significant correlations with tumor size and lymph node involvement. Here, we measured the concentration of plasma u-PA and PAI-1 antigens in the patients with lung cancer and compared the concentration of them with histologic types and staging parameters. Methods : We measured the concentration of plasma u-PA and PAI-1 antigens using commercial ELISA kit in 37 lung cancer patients, 21 benign lung disease patients and 24 age-matched healthy controls, and we compared the concentration of them with histologic types and staging parameters in lung cancer patients. Results : The concentration of u-PA was $1.0{\pm}0.3ng/mL$ in controls, $1.0{\pm}0.3ng/mL$ in benign lung disease patients and $0.9{\pm}0.3ng/mL$ in lung cancer patients. The concentration of PAI-1 was $14.2{\pm}6.7ng/mL$ in controls, $14.9{\pm}6.3ng/mL$ in benign lung disease patients, and $22.1{\pm}9.8ng/mL$ in lung cancer patients. The concentration of PAI-1 in lung cancer patients was higher than those of benign lung disease patients and controls. The concentration of u-PA was $0.7{\pm}0.4ng/mL$ in squamous cell carcinoma, $0.8{\pm}0.3ng/mL$ in adenocarcinoma, 0.9ng/mL in large cell carcinoma, and $1.1{\pm}0.7ng/mL$ in small cell carcinoma. The concentration of PAI-1 was $22.3{\pm}7.2ng/mL$ in squamous cell carcinoma, $22.6{\pm}9.9ng/mL$ in adenocarcinoma, 42 ng/mL in large cell carcinoma, and $16.0{\pm}14.2ng/mL$ in small cell carcinoma. The concentration of u-PA was 0.74ng/mL in stage I, $1.2{\pm}0.6ng/mL$ in stage II, $0.7{\pm}0.4ng/mL$ in stage IIIA, $0.7{\pm}0.4ng/mL$ in stage IIIB, and $0.7{\pm}0.3ng/mL$ in stage IV. The concentration of PAI-1 was 21.8ng/mL in stage I, $22.7{\pm}8.7ng/mL$ in stage II, $18.4{\pm}4.9ng/mL$ in stage IIIA, $25.3{\pm}9.0ng/mL$ in stage IIIB, and $21.5{\pm}10.8ng/mL$ in stage IV. When we divided T stage into T1-3 and T4, the concentration of u-PA was $0.8{\pm}0.4ng/mL$ in T1-3 and $0.7{\pm}0.4ng/mL$ in T4, and the concentration of PAI-1 was $17.9{\pm}5.6ng/mL$ in T1-3 and $26.1{\pm}9.1ng/mL$ in T4. The concentration of PAI-1 in T4 was significantly higher than that in T1-3. The concentration of u-PA was $0.8{\pm}0.4ng/mL$ in M0 and $0.7{\pm}0.3ng/mL$ in M1, and the concentration of PAI-1 was $23.6{\pm}8.3ng/mL$ in M0 and $21.5{\pm}10.8ng/mL$ in M1. Conclusions : The plasma levels of PAI-1 in lung cancer were higher than benign lung disease and controls, and the plasma levels of PAI-1 in T4 were significantly higher than T1-3. These findings suggest involvement of PAI-1 with local invasion of lung cancer, but it should be confirmed by the data on comparison with pathological staging and tissue level in lung cancer.

  • PDF

Ginsenoside $Rh_1$$Rh_2$의 HT1080 세포 침윤억제 작용에 관한 연구

  • 박문택;차희재
    • Journal of Ginseng Research
    • /
    • v.22 no.3
    • /
    • pp.216-221
    • /
    • 1998
  • We examined the anti-invasive activity of ginsenosides Rhl, Rha on the highly metastatic HT1080 human fibrosarcoma cell line. In vitro invasion assay showed ginsenoside Rhr reduced tumor cell invasion through a reconstituted basement membrane in a transwell chamber more than ginsenoside Rh1. Significant down-regulation of matrix metalloproteinase-9 (MMP-9) by ginsenosides Rh, and Rh2 was detected by Northern blot analysis. However, the expression of MMP-2 was not affected by Rh, and Rhr. The expression of tissue inhibitor of metalloproteinase-2 (TIMP-2) was increased by Rhl after 0.5, 1 or 3 day-treatment but reduced after 6 day-treatment. However, the expression of TIMP-2 was not changed by treatment with Rh2. Plasminogen activator inhibitor (PAI) and urokinase-type plasmlnogen activator (uPA) were not changed by treatment with Rh1 and Rh2 for 3 and 6 days. Quantitative gelatin-based zymography confirmed a markedly reduced expression of MMP-9 but MMP-2 after treatments with ginsenosides Rhl and Rha. These results suggest that down-regulation of MMP-9 contributes to the anti-invasive activity of ginsenosides Rhl and Rhr in the HT1080 cells.

  • PDF

Effects of Cumulus Cells and Follicular Fluid on Plasminogen Activator Activity during In Vitro Maturation of Porcine Oocytes

  • Ann Ji-Young;Sa Soo-Jin;Cao Yang;Lee Sang-Young;Cheon Hee-Tae;Yang Boo-Keun;Park Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.30 no.2
    • /
    • pp.135-141
    • /
    • 2006
  • The present study was conducted to investigate the effects of cumulus cells and porcine follicular fluid (pFF) on plasminogen activator (PA) activity and oocytes maturation in vitro in the pig. The cumulus-oocyte complexes (COCs) and denuded oocytes (DOs) were incubated in NCSU-23 medium with or without 10% pFF for 0, 24, or 48 hr. In the presence of cumulus cells, the proportions of oocytes matured to metaphase-II stage were significantly (P<0.05) higher in medium with pFF than without pFF (69.8 vs. 37.7%, respectively). When COCs and DOs were cultured in the presence of pFF, tissue-type PA (tPA), urokinase-type PA (uPA), and tPA-PA inhibitor (tPA-PAI) were observed in COCs, and PA activities were higher at 48 hr than 24 hr. When COCs and DOs were cultured in the absence of pFF, tPA and tPA-PAI were observed in COCs, and PA activities were increased as duration of culture increased. No PA activities were detected in DOs regardless of pFF supplementation. When porcine oocytes were cultured in the presence of pFF for 24 and 48 hrs, the activities of tPA-PAI, tPA, and uPA were observed in both COCs and DOs. In medium of absence of pFF, PA activities were observed in oocytes with cumulus cells only. On the other hand, three plasminogen-dependent lytic bands (tPA-PAI, tPA, and uPA) were observed in pFF cultures. Particularly uPA activity was higher than the other kinds of PA activity. When oocytes and cumulus cells were separated from porcine COCs at 0 hr of culture, tPA-PAI, tPA, and uPA were detected in cumulus cells at 48 hr of culture, but no PA activities were in DOs. The presence of pFF and cumulus cells in maturation medium stimulated not only nuclear and cytoplasmic maturation in porcine COCs, but also PA production by cumulus cells and COCs. It is possible that PAs produced by cumulus cells migrated through the gap junction between oocyte and cumulus cells. These results suggest that porcine oocytes have no ability to produce PA themselves.

Study on Production of Transgenic Pig Harboring Tissue Plasminogen Activator Gene

  • Park, Jin-Ki;Jeon, Ik-Soo;Lee, Yun-Keun;Lee, Poongyeon;Kim, Sung-Woo;Kim, Jung-Ho;Han, Joo-Hee;Park, Chun-Gyu;Min, Kwan-Sik
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.43-43
    • /
    • 2003
  • This study was conducted to produce transgenic pig harboring human tissue plasminogene activator (tPA) gene. Two different tPA genes containing bovine $\beta$-casein promoter and mouse uroplakin promoter were prepared for microinjection and confirmed the expression level of tPA protein from the CHO (Chinese hamster ovary) cell lines by gene transfection. Concentration of tPA expression from the six cell lines (all of CHO cells) were average 212.4 ng/ml. Reconstructed DNA to used the CHO cell were microinjected into the pronuclei of in vivo embryos The total of 2,307 zygotes were collected from 95 donors and 1,851 embryos were in 1-cell stage which were visualized the pronuclei for DNA microinjection. The concentration of linear DNA was 2.0 ng per microliter and injected into zygotes with two pronuclei on an inverted Nikon microscope equipped with narishige micromanipulator and modulation contrast optics. The 541 embryos injected with bovine $\beta$-casein promoter-tPA were transferred to 22 recipients. The 1,154 embryos injected with mouse uroplakin promoter-tPA were transferred to 51 recipients. Sixty nine offspring from 9 delivered sows were produced. We analysed the transgenes with PCR methods from 69 offsprings, but could not detect the PCR product from piglet tails DNA.

  • PDF

Coagulation and Fibrinolysis in Exudative Pleural Effusions (삼출성 흉막액에서 응고 및 섬유소 용해계에 관한 연구)

  • Ryu, Jeong-Seon;Lee, Hong-Lyeol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.6
    • /
    • pp.1214-1222
    • /
    • 1998
  • Background : The intrapleural hypofibrinolysis is caused by mainly excessive concentration of pleural plasminogen activator inhibitor-1 antigen(PAI-1 Ag), which binds tissue type plasminogen activator. In pleural inflammation induced by sclerosing agents for pleurodesis, levels of pleural PAI-1 antigen increase in relation to decreasing D-dimer levels. It has been known that the pleural mesothelial cells have the capability of secreting PAI-1 Ag in response to inflammation in vivo. Therefore, we estimated whether pleural inflammation changes the balance between fibrinolytic and coagulative properties in exudative pleural effusions. Method : The thirty cases was included in our study. We determined the pleural levels of glucose, lactic dehydrogenase(LDH), pH and the counts of white blood cell(WBC), polymorpho leukocyte(PMN), lymphocyte as the parameters of pleural inflammation and cellular components of pleural fluid. The plasma level of fibrinogen in fluid and the neutrophil count in blood were determined. The levels of D-dimer, PAI-1 Ag and thrombinantithrombin III complex(TAT) were determined by ELISA(Behring, Marburg, Germany). Result : The causes of pleural effusion were as following : tuberculous in 14 cases, malignant in 10 cases and parapneumonic in 6 cases. The levels of pleural D-dimer, PAI-1 Ag and TAT was significantly higher than that of plasma(p<0..001). The severity of pleural inflammation did not correlated with pleural D-dimer, PAI-1 Ag, TAT and their plasma levels. But the level of pleural TAT correlated with pleural WBC and lymphocyte count. Conclusion : We found that the severity of pleural inflammations did not correlated with pleural D-dimer, PAI-1 Ag, TAT and the possibility of local production of PAI-1 antigen is present.

  • PDF

Primary thrombolysis for free flap surgery in head and neck reconstruction: a case report and review

  • Zhang, Steven Liben;Ng, Hui Wen
    • Archives of Plastic Surgery
    • /
    • v.48 no.5
    • /
    • pp.511-517
    • /
    • 2021
  • The use of free flaps is an essential and reliable method of reconstruction in complex head and neck defects. Flap failure remains the most feared complication, the most common cause being pedicle thrombosis. Among other measures, thrombolysis is useful when manual thrombectomy has failed to restore flap perfusion, in the setting of late or established thrombosis, or in arterial thrombosis with distal clot propagation. We report a case of pedicle arterial thrombosis with distal clot propagation which occurred during reconstruction of a maxillectomy defect, and was successfully treated with thrombolysis using recombinant tissue plasminogen activator. We also review the literature regarding the use of thrombolysis in free flap surgery, and propose an algorithm for the salvage of free flaps in head and neck reconstruction.

Plasminogen Activators Activities in Oviductal Epithelial Cells during Estrus Cycle in the Pig

  • Shin, Mi-Young;Kim, Tae-Shin;Kwon, Eun-Hye;Park, Soo-Bong;Park, Chun-Keun;Lee, Dong-Seok
    • Reproductive and Developmental Biology
    • /
    • v.32 no.2
    • /
    • pp.89-95
    • /
    • 2008
  • The present study was undertaken to identify changes of plasminogen activators (PAs) in porcine oviductal epithelial cells (POECs) during the estrous cycle classified with post-ovulatory stages (Post-Ov), early to mid-luteal stages (Early-mid L) and pre-ovulatory (Pre-Ov) stages. The urokinase-type plasminogen activator (uPA) was only observed on day 5 and day 7 of culture in the POECs on all the estrous cycles and gradually increased according to increasing culture times, but not Early-mid L. In POECs-conditioned medium, uPA, tissue-type (tPA) and tPA-PA inhibitor (tPA-PAI) activity were observed at all culture times during estrous cycles. The uPA activity of POECs-conditioned medium on Post-Ov stage were significantly (p<0.05) decreased during prolonged cultures. On the other hand, the tPA activity of POECs-conditioned medium at Post-Ov stage was significantly (p<0.05) higher on day 5 than compared to the other days. Although was higher on day 1 at Post-Ov stage, the tPA-PAI activity of POECs-conditioned medium was significantly (p<0.05) higher on day 7 at all stage than that of day 5 of the culture. Taken together, these results suggest that uPA, tPA and tPA-PAI are produced by POECs, and the variations of the PAs activity are regulated in the different stages of the estrous cycle.

Beyond Clot Dissolution; Role of Tissue Plasminogen Activator in Central Nervous System

  • Kim, Ji-Woon;Lee, Soon-Young;Joo, So-Hyun;Song, Mi-Ryoung;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • v.15 no.1
    • /
    • pp.16-26
    • /
    • 2007
  • Tissue plasminogen activator (tPA) is a serine protease catalyzing the proteolytic conversion of plasminogen into plasmin, which is involved in thrombolysis. During last two decades, the role of tPA in brain physiology and pathology has been extensively investigated. tPA is expressed in brain regions such as cortex, hippocampus, amygdala and cerebellum, and major neural cell types such as neuron, astrocyte, microglia and endothelial cells express tPA in basal status. After strong neural stimulation such as seizure, tPA behaves as an immediate early gene increasing the expression level within an hour. Neural activity and/or postsynaptic stimulation increased the release of tPA from axonal terminal and presumably from dendritic compartment. Neuronal tPA regulates plastic changes in neuronal function and structure mediating key neurologic processes such as visual cortex plasticity, seizure spreading, cerebellar motor learning, long term potentiation and addictive or withdrawal behavior after morphine discontinuance. In addition to these physiological roles, tPA mediates excitotoxicity leading to the neurodegeneration in several pathological conditions including ischemic stroke. Increasing amount of evidence also suggest the role of tPA in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis even though beneficial effects was also reported in case of Alzheimer's disease based on the observation of tPA-induced degradation of $A{\beta}$ aggregates. Target proteins of tPA action include extracellular matrix protein laminin, proteoglycans and NMDA receptor. In addition, several receptors (or binding partners) for tPA has been reported such as low-density lipoprotein receptor-related protein (LRP) and annexin II, even though intracellular signaling mechanism underlying tPA action is not clear yet. Interestingly, the action of tPA comprises both proteolytic and non-proteolytic mechanism. In case of microglial activation, tPA showed non-proteolytic cytokine-like function. The search for exact target proteins and receptor molecules for tPA along with the identification of the mechanism regulating tPA expression and release in the nervous system will enable us to better understand several key neurological processes like teaming and memory as well as to obtain therapeutic tools against neurodegenerative diseases.

Detecting Activated Thrombin Activatable Fibrinolysis Inhibitor (TAFIa) and Inactivated TAFIa (TAFIai) in Normal and Hemophilia A Plasmas

  • Hulme, John P.;An, Seong Soo A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.77-82
    • /
    • 2009
  • Thrombin activatable fibrinolysis inhibitor (TAFI) also known as plasma procarboxypeptidase B or U is a 60 kD glycoprotein, which is the major modulator of fibrinolysis in plasma. TAFI is a proenzyme, which is activated by proteolytic cleavage to an active carboxypeptidase B-like enzyme (TAFIa, 35.8 kD) by thrombin/thrombomodulin and plasmin. Modulation of fibrinolysis occurs when TAFIa enzymatically removes C-terminal lysine residues of partially degraded fibrin, thereby inhibiting the stimulation of tissue plasminogen activator (t-PA) modulated plasminogen activation. TAFIa undergoes a rapid conformational change at $37{^{\circ}C}$ to an inactive isoform called TAFIai. Potato tuber carboxypetidase inhibitor (PTCI) was shown to specifically bind to TAFIa as well as TAFIai. In this study, a novel immunoassay TAFIa/ai ELISA was used for quantitation of the two TAFI activation isoforms TAFIa and TAFIai. The ELISA utilizes PTCI as the capture agent and a double antibody sandwich technique for the detection. Low levels of TAFIa/ai antigen levels were detected in normal plasma and elevated levels were found in hemophilia A plasmas. TAFIa/ai antigen represents a novel marker to monitor fibrinolysis and TAFIa/ai ELISA may be a valuable assay for studying the role of TAFI in normal hemostasis and in pathological conditions.