• Title/Summary/Keyword: Tissue adhesion

Search Result 318, Processing Time 0.03 seconds

ANTI-INFLAMMATORY EFFECTS OF PPARγ ON HUMAN DENTAL PULP CELLS (치수세포에서 PPARγ의 항 염증작용에 관한 연구)

  • Kim, Jeong-Hee
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.3
    • /
    • pp.203-214
    • /
    • 2006
  • Dental pulp is a loose, mesenchymal tissue almost entirely enclosed in the dentin. It consists of cells, ground substance, and neural and vascular supplies. Damage to the dental pulp by mechanical, chemical, thermal, and microbial irritants can provoke various types of inflammatory response. Pulpal inflammation leads to the tissue degradation, which is mediated in part by Matrix metalloproteinase leads to accelerate extracellular matrix degradation with pathological pathway We have now investigated the induction of MMPs and inflammatory cytokines by Lipopolysaccharide (LPS) control of inflammatory mediators by peroxisome proliferator-activated receptors (PPARs). Human dental pulp cells exposed to various concentrations of LPS ($1-10{\mu}g/ml$) revealed elevated levels of MMP-2 and MMP-9 at 24 hrs of culture. LPS also stimulated the production of ICAM-1, VCAM-1, $IL-1{\beta},\;and\;TNF-{\alpha}$. Adenovirus $PPAR{\gamma}\;(Ad/PPAR{\gamma})\;and\;PPAR{\gamma}$ agonist rosiglitazone reduced the synthesis of MMPs, adhesion molecules and pro-inflammatory cytokines. The inhibitory effect of $Ad/PPAR{\gamma}$ was higher than that of $PPAR{\gamma}$ agonist. These result offer new insights in regard to the anti-inflammatory potential of $PPAR{\gamma}$ in human dental pulp cell.

Increased α2-6 sialylation of endometrial cells contributes to the development of endometriosis

  • Choi, Hee-Jin;Chung, Tae-Wook;Choi, Hee-Jung;Han, Jung Ho;Choi, Jung-Hye;Kim, Cheorl-Ho;Ha, Ki-Tae
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.9.1-9.12
    • /
    • 2018
  • Endometriosis is a disease characterized by implants of endometrial tissue outside the uterine cavity and is strongly associated with infertility. Focal adhesion of endometrial tissue to the peritoneum is an indication of incipient endometriosis. In this study, we examined the effect of various cytokines that are known to be involved in the pathology of endometriosis on endometrial cell adhesion. Among the investigated cytokines, transforming growth factor-${\beta}1$ ($TGF-{\beta}1$) increased adhesion of endometrial cells to the mesothelium through induction of ${\alpha}2-6$ sialylation. The expression levels of ${\beta}$-galactoside ${\alpha}2-6$ sialyltransferase (ST6Gal) 1 and ST6Gal2 were increased through activation of $TGF-{\beta}RI/SMAD2/3$ signaling in endometrial cells. In addition, we discovered that terminal sialic acid glycan epitopes of endometrial cells engage with sialic acid-binding immunoglobulin-like lectin-9 expressed on mesothelial cell surfaces. Interestingly, in an in vivo mouse endometriosis model, inhibition of endogenous sialic acid binding by a $NeuAc{\alpha}2-6Gal{\beta}1$-4GlcNAc injection diminished $TGF-{\beta}1$-induced formation of endometriosis lesions. Based on these results, we suggest that increased sialylation of endometrial cells by $TGF-{\beta}1$ promotes the attachment of endometrium to the peritoneum, encouraging endometriosis outbreaks.

The effects of composit grafts of allogenic decalcified freeze Dried bone and calcium sulfate on the healing of 1-wall intrabony defects in dogs (성견의 1면 골내낭에서 탈회 냉동 건조골과 calcium sulfate 혼합이식이 치주조직 치유에 미치는 영향)

  • Suh, Jong-Jin;Choi, Seong-Ho;Cho, Kyoo-Sung;Chai, Jung-Kiu
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.2
    • /
    • pp.249-264
    • /
    • 1998
  • The present study evaluates the effects of calcium sulfate and DFDB on alveolar bone regeneration and cementum formation and connective tissue adhesion in intrabony angulated 1 wall defects of dogs. Four millimeter-deep angulated one-wall intrabony defects were surgically created in the mesial & distal aspects of premolars and with flap operaion alone(control group), with calcium sulfate(experimental group 1), with composit graft of 50% calcium sulfate and 50% DFDB(experimental group 2), with DFDB alone(experimental group 3). Histologic analysis following 8 weeks of healing revealed the following results: 1. The lengths of connective tissue adhesion was $1.05{\pm}0.48mm$ in the control, $1.30{\pm}0.67mm$ in the test group I, $0.97{\pm}0.22mm$ in the test group II and $0.93{\pm}0.15mm$ in the test group III. There was no statistical significance between control and all experimental groups. 2. Changes in alveolar bone level was $0.97{\pm}0.27mm$ in the control group, $1.45{\pm}0.42mm$ in the test group I, $2.00{\pm}0.33mm$ in the test group II, $1.88{\pm}0.34mm$ in the test group III. There was no statistically significant difference between control and experimental group I. There was a statistically significant difference between the control and experimental group II,III.(p<0.05). There was no statistically significant difference between all experimental group. 3. Cementum formation was $1.13{\pm}0.17mm$ in the control, $1.78{\pm}0.31mm$ in the test group I, $2.17{\pm}0.38mm$ in the test group II, $2.15{\pm}0.47mm$ in the test group III with statistically significant differences between control group and all experimental group(P<0.05). There was no statistically significant differences between all experimental group. These results suggest that the use of composit graft of 50% calcium sulfate and 50% DFDB and DFDB alone in angulated 1 wall intrabony defects has little effects on connective tissue adhesion, but has significant effects on new bone and new cementum formations.

  • PDF

Preparation of PHBV/Collagen Nanofibrous Mats and their Tissue Compatibility Compatibilscaffolds for tissue engineering

  • Meng, Wan;Kim, Se-Yong;Yuan, Jiang;Kim, Jung-Chul;Kwon, Oh-Hyeong;Ito, Yoshihiro;Kang, Inn-Kyu
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.50-51
    • /
    • 2006
  • The nanofibrous scaffolds were obtained by co-electrospinning PHBV and collagen Type I in HIFP. The resulting fiber diameters were in the range between 300 and 600 nm. The nanofiber surfaces were characterized by ATR-FTIR, ESCA and AFM. The PHBV and collagen components of the PHBV-Col nanofibrous scaffold were biodegraded by PHB depolymerase and a collagenase Type I aqueous solution, respectively. It was found, from the cell-culture experiment, that the PHBV-Col nanofibrous scaffold accelerated the adhesion of the NIH 3T3 cell compared to the PHBV nanofibrous scaffold, thus showing a good tissue engineering scaffold.

  • PDF

Molecular and Cellular Mechanisms of Syndecans in Tissue Injury and Inflammation

  • Bartlett, Allison H.;Hayashida, Kazutaka;Park, Pyong Woo
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.153-166
    • /
    • 2007
  • The syndecan family of heparan sulfate proteoglycans is expressed on the surface of all adherent cells. Syndecans interact with a wide variety of molecules, including growth factors, cytokines, proteinases, adhesion receptors and extracellular matrix components, through their heparan sulfate chains. Recent studies indicate that these interactions not only regulate key events in development and homeostasis, but also key mechanisms of the host inflammatory response. This review will focus on the molecular and cellular aspects of how syndecans modulate tissue injury and inflammation, and how syndecans affect the outcome of inflammatory diseases in vivo.

Tissue and Immune Responses on Implanted Nanostructured Biomaterials

  • Khang, Dong-Woo;Kang, Sang-Soo;Nam, Tae-Hyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.47.1-47.1
    • /
    • 2009
  • Nanostructured biomaterials have increased those potential for utilizing in many medical applications. In this study, benefit of nanotechnology for the response with biological targets will be described in terms of size, effective surface area and surface energy (physical aspect). Also, correlations between physical and biological interactions (greater protein adsorption on nano surface roughness) will be discussed for understanding biocompatibility of nanostructured biomaterials including carbon nanotube composites and nanostructured titanium surfaces. In the application parts, various major tissue cells, such as bone, cartilage, vascular and bladder cell responses will be discussed with suggested nanomaterials. Lastly, immune responses with macrophage (adhesion and several major cytokines) on nanostructured biomaterials will be described for evasive immune response.

  • PDF

The Role of Proprotein Convertases in Upper Airway Remodeling

  • Lee, Sang-Nam;Yoon, Joo-Heon
    • Molecules and Cells
    • /
    • v.45 no.6
    • /
    • pp.353-361
    • /
    • 2022
  • Chronic rhinosinusitis (CRS) is a multifactorial, heterogeneous disease characterized by persistent inflammation of the sinonasal mucosa and tissue remodeling, which can include basal/progenitor cell hyperplasia, goblet cell hyperplasia, squamous cell metaplasia, loss or dysfunction of ciliated cells, and increased matrix deposition. Repeated injuries can stimulate airway epithelial cells to produce inflammatory mediators that activate epithelial cells, immune cells, or the epithelial-mesenchymal trophic unit. This persistent inflammation can consequently induce aberrant tissue remodeling. However, the molecular mechanisms driving disease within the different molecular CRS subtypes remain inadequately characterized. Numerous secreted and cell surface proteins relevant to airway inflammation and remodeling are initially synthesized as inactive precursor proteins, including growth/differentiation factors and their associated receptors, enzymes, adhesion molecules, neuropeptides, and peptide hormones. Therefore, these precursor proteins require post-translational cleavage by proprotein convertases (PCs) to become fully functional. In this review, we summarize the roles of PCs in CRS-associated tissue remodeling and discuss the therapeutic potential of targeting PCs for CRS treatment.

Regenerative medicine using dental tissue derived induced pluripotent stem cell-biomaterials complex (구강조직유래 유도만능줄기세포-생체재료 복합체의 재생의료 동향)

  • Jun, Soo-Kyung;Lee, Hae-Hyoung;Kim, Hae-Won;Lee, Jung-Hwan
    • The Journal of the Korean dental association
    • /
    • v.55 no.12
    • /
    • pp.828-840
    • /
    • 2017
  • In recent years, many researchers and clinicians found interest in regenerative medicine using induced pluripotent stem cells (iPSCs) with biomaterials due to their pluripotency, which is able to differentiate into any type of cells without human embryo, which of use is ethically controversial. However, there are limitations to make iPSCs from adult somatic cells due to their low stemness and donor site morbidity. Recently, to overcome above drawbacks, dental tissue-derived iPSCs have been highlighted as a type of alternative sources for their high stemness, easy gathering, and their complex (ectomesenchymal) origin, which easily differentiate them to various cell types for nerve, vessel, and other dental tissue regeneration. In other part, utilizing biomaterials for regenerative medicine using cell is recently highlighted because they can modulate cell adhesion, proliferation and (de)differentiation. Therefore, this paper will convey the overview of advantages and drawbacks of dental tissue-derived iPSCs and their future application with biomaterials.

  • PDF

Improved cell adhesion to ion beam-irradiated biodegradable membranes (이온빔조사에 의한 생분해성 차폐막의 세포부착력 증진에 관한 연구)

  • Lee, Yong-Moo;Park, Yoon-Jeong;Lee, Seung-Jin;Ku, Young;Rhyu, In-Chul;Han, Soo-Boo;Choi, Sang-Mook;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.4
    • /
    • pp.601-611
    • /
    • 1998
  • Ion irradiation is a very promising tool to modify the chemical structure and physical properities of polymers. This study was aimed to evaluate the cellular adhesion to ion beam-irradiated surface of biodegradable poly-l-lactide(PLLA) membrane. The PLLA membrane samples were irradiated by using 35 KeV $Ar^+$ to fluence of $5{\times}10^{13}$, $5{\times}10^{14}$ and $5{\times}10^{15}\;ion/cm^2$. Water contact angles to control and each dose of ion beam-irradiated PLLA membranes were measured. Cultured fetal rat calvarial osteoblasts were seeded onto control and each dose of ion beam-irradiated PLLA membranes and cultured. After 24 hours, each PLLA membranes onto which osteoblasts attached were examined by scanning electron microscopy(SEM). Osteoblasts were removed from each PLLA membrane and then, the vitality and the number of cells were calibrated. Alkaline phosphatase of detached cells from each PLLA membranes were measured. Ion beam-irradiated PLLA membranes showed no significantly morphological change from control PLLA membranes. In the measurement of water contact angle to each membrane, the dose range of ion beam employed in this study reduced significantly contact angles. Among them, $5{\times}10^{14}\;ion/cm^2$ showed the least contact angle. The vitalities of osteoblastes detached from each membranes were confirmed by flow cytometer and well attached cells with their own morphology onto each membranes were observed by SEM. A very strong improvement of the cell adhesion and proliferation was observed for ion beam-irradiated surfaces of PLLA membranes. $5{\times}10^{15}\;ion/cm^2$ exhibited the most strong effect also in cellular adherence. ALPase activities also tended to increase in ion beam-irradiated membranes but statistical differences were not found. These results suggested that ion beam irradiation is an effective tool to improve the adhesion and spreading behaviour of the cells onto the biodegradable PLLA membranes for the promotion of membrane-tissue integration.

  • PDF

Effect of laser-dimpled titanium surfaces on attachment of epithelial-like cells and fibroblasts

  • Lee, Dong-Woon;Kim, Jae-Gu;Kim, Meyoung-Kon;Ansari, Sahar;Moshaverinia, Alireza;Choi, Seong-Ho;Ryu, Jae-Jun
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.138-145
    • /
    • 2015
  • PURPOSE. The objective of this study was to conduct an in vitro comparative evaluation of polished and laser-dimpled titanium (Ti) surfaces to determine whether either surface has an advantage in promoting the attachment of epithelial-like cells and fibroblast to Ti. MATERIALS AND METHODS. Forty-eight coin-shaped samples of commercially pure, grade 4 Ti plates were used in this study. These discs were cleaned to a surface roughness (Ra: roughness centerline average) of 180 nm by polishing and were divided into three groups: SM (n=16) had no dimples and served as the control, SM15 (n=16) had $5-{\mu}m$ dimples at $10-{\mu}m$ intervals, and SM30 (n=16) had $5-{\mu}m$ dimples at $25-{\mu}m$ intervals in a $2{\times}4mm^2$ area at the center of the disc. Human gingival squamous cell carcinoma cells (YD-38) and human lung fibroblasts (MRC-5) were cultured and used in cell proliferation assays, adhesion assays, immunofluorescent staining of adhesion proteins, and morphological analysis by SEM. The data were analyzed statistically to determine the significance of differences. RESULTS. The adhesion strength of epithelial cells was higher on Ti surfaces with $5-{\mu}m$ laser dimples than on polished Ti surfaces, while the adhesion of fibroblasts was not significantly changed by laser treatment of implant surfaces. However, epithelial cells and fibroblasts around the laser dimples appeared larger and showed increased expression of adhesion proteins. CONCLUSION. These findings demonstrate that laser dimpling may contribute to improving the peri-implant soft tissue barrier. This study provided helpful information for developing the transmucosal surface of the abutment.