Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Bulun, S. E. Endometriosis. N. Engl. J. Med. 360, 268-279 (2009). https://doi.org/10.1056/NEJMra0804690
- Giudice, L. C. & Kao, L. C. Endometriosis. Lancet 364, 1789-1799 (2004). https://doi.org/10.1016/S0140-6736(04)17403-5
- Young, V. J., Brown, J. K., Saunders, P. T. & Horne, A. W. The role of the peritoneum in the pathogenesis of endometriosis. Hum. Reprod. Update 19, 558-569 (2013). https://doi.org/10.1093/humupd/dmt024
- Miller, J. E. et al. Implications of immune dysfunction on endometriosis associated infertility. Oncotarget 8, 7138-7147 (2017).
- Sundqvist, J., Andersson, K. L., Scarselli, G., Gemzell-Danielsson, K. & Lalitkumar, P. G. Expression of adhesion, attachment and invasion markers in eutopic and ectopic endometrium: a link to the aetiology of endometriosis. Hum. Reprod. 27, 2737-2746 (2012). https://doi.org/10.1093/humrep/des220
- Burney, R. O. & Giudice, L. C. Pathogenesis and pathophysiology of endometriosis. Fertil. Steril. 98, 511-519 (2012). https://doi.org/10.1016/j.fertnstert.2012.06.029
- Barcz, E. et al. Peritoneal cytokines and adhesion formation in endometriosis: an inverse association with vascular endothelial growth factor concentration. Fertil. Steril. 97, 1380-1386 (2012). https://doi.org/10.1016/j.fertnstert.2012.03.057
- Omwandho, C. O., Konrad, L., Halis, G., Oehmke, F. & Tinneberg, H. R. Role of Tgf-betas in normal human endometrium and endometriosis. Hum. Reprod. 25, 101-109 (2010). https://doi.org/10.1093/humrep/dep382
- Wu, M. Y. & Ho, H. N. The role of cytokines in endometriosis. Am. J. Reprod. Immunol. 49, 285-296 (2003). https://doi.org/10.1034/j.1600-0897.2003.01207.x
- Dall'Olio, F., Malagolini, N., Trinchera, M. & Chiricolo, M. Mechanisms of cancerassociated glycosylation changes. Front. Biosci. (Landmark Ed.) 17, 670-699 (2012). https://doi.org/10.2741/3951
- Lannoo, N. & Van Damme, E. J. Review/N-glycans: the making of a varied toolbox. Plant Sci. 239, 67-83 (2015). https://doi.org/10.1016/j.plantsci.2015.06.023
- Bassaganas, S. et al. Pancreatic cancer cell glycosylation regulates cell adhesion and invasion through the modulation of Alpha2beta1integrin and E-cadherin function. PLoS ONE 9, e98595 (2014). https://doi.org/10.1371/journal.pone.0098595
- Oliveira-Ferrer, L., Legler, K. & Milde-Langosch, K. Role of protein glycosylation in cancer metastasis. Semin. Cancer Biol. 44, 141-152 (2017). https://doi.org/10.1016/j.semcancer.2017.03.002
- Berkes, E., Muzinic, A., Rigo, J. Jr., Tinneberg, H. R. & Oehmke, F. The analysis of the human plasma N-glycome in endometriosis patients. Eur. J. Obstet. Gynecol. Reprod. Biol. 171, 107-115 (2013). https://doi.org/10.1016/j.ejogrb.2013.08.008
- Kocbek, V., Hevir-Kene, N., Bersinger, N. A., Mueller, M. D. & Rizner, T. L. Increased levels of biglycan in endometriomas and peritoneal fluid samples from ovarian endometriosis patients. Gynecol. Endocrinol. 30, 520-524 (2014). https://doi.org/10.3109/09513590.2014.898055
- Nakagawa, N. et al. Reactivity of Ca19-9 and Ca125 in histological subtypes of epithelial ovarian tumors and ovarian endometriosis. Acta Med. Okayama 69, 227-235 (2015).
- Rodgers, A. K., Nair, A., Binkley, P. A., Tekmal, R. & Schenken, R. S. Inhibition of Cd44 N- and O-linked glycosylation decreases endometrial cell lines attachment to peritoneal mesothelial cells. Fertil. Steril. 95, 823-825 (2011). https://doi.org/10.1016/j.fertnstert.2010.09.005
- Zeitvogel, A., Baumann, R. & Starzinski-Powitz, A. Identification of an invasive, N-cadherin-expressing epithelial cell type in endometriosis using a new cell culture model. Am. J. Pathol. 159, 1839-1852 (2001). https://doi.org/10.1016/S0002-9440(10)63030-1
- Nishida, M., Kasahara, K., Kaneko, M., Iwasaki, H. & Hayashi, K. Establishment of anew human endometrial adenocarcinoma cell line, Ishikawa cells, containing estrogen and progesterone receptors. Nihon Sanka Fujinka Gakkai Zasshi 37, 1103-1111 (1985).
- Somigliana, E. et al. Endometrial ability to implant in ectopic sites can be prevented by interleukin-12 in a murine model of endometriosis. Hum. Reprod. 14, 2944-2950 (1999). https://doi.org/10.1093/humrep/14.12.2944
- Yuan, Y., Wu, L., Shen, S., Wu, S. & Burdick, M. M. Effect of alpha 2,6 sialylation on integrin-mediated adhesion of breast cancer cells to fibronectin and collagen Iv. Life. Sci. 149, 138-145 (2016). https://doi.org/10.1016/j.lfs.2016.02.071
- Bull, C., Stoel, M. A., den Brok, M. H. & Adema, G. J. Sialic acids sweeten a tumor’s life. Cancer Res. 74, 3199-3204 (2014). https://doi.org/10.1158/0008-5472.CAN-14-0728
- Rodriguez-Garcia, A. et al. Tgf-Beta1 targets Smad, P38 Mapk, and Pi3k/Akt signaling pathways to induce Pfkfb3 gene expression and glycolysis in glioblastoma cells. Febs. J. 284, 3437-3454 (2017). https://doi.org/10.1111/febs.14201
- O'Reilly, M. K. & Paulson, J. C. Siglecs as targets for therapy in immune-cellmediated disease. Trends Pharmacol. Sci. 30, 240-248 (2009). https://doi.org/10.1016/j.tips.2009.02.005
- Crocker, P. R., Paulson, J. C. & Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7, 255-266 (2007). https://doi.org/10.1038/nri2056
- Pinho, S. S. & Reis, C. A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15, 540-555 (2015). https://doi.org/10.1038/nrc3982
- Ohtsubo, K. & Marth, J. D. Glycosylation in cellular mechanisms of health and disease. Cell 126, 855-867 (2006). https://doi.org/10.1016/j.cell.2006.08.019
- Axford, J. The impact of glycobiology on medicine. Trends Immunol. 22, 237-239 (2001). https://doi.org/10.1016/S1471-4906(01)01890-7
- Cui, H., Lin, Y., Yue, L., Zhao, X. & Liu, J. Differential expression of the alpha2,3- sialic acid residues in breast cancer is associated with metastatic potential. Oncol. Rep. 25, 1365-1371 (2011).
- Lin, S., Kemmner, W., Grigull, S. & Schlag, P. M. Cell surface alpha 2,6 sialylation affects adhesion of breast carcinoma cells. Exp. Cell Res. 276, 101-110 (2002). https://doi.org/10.1006/excr.2002.5521
- Jones, C. J., Denton, J. & Fazleabas, A. T. Morphological and glycosylation changes associated with the endometrium and ectopic lesions in a baboon model of endometriosis. Hum. Reprod. 21, 3068-3080 (2006). https://doi.org/10.1093/humrep/del310
- Jones, C. J., Inuwa, I. M., Nardo, L. G., Litta, P. & Fazleabas, A. T. Eutopic endometrium from women with endometriosis shows altered ultrastructure and glycosylation compared to that from healthy controls-a pilot observational study. Reprod. Sci. 16, 559-572 (2009). https://doi.org/10.1177/1933719109332825
- Witz, C. A. Pathogenesis of endometriosis. Gynecol. Obstet. Invest. 53, 52-62 (2002). https://doi.org/10.1159/000049425
- Massague, J. TGF beta in cancer. Cell 134, 215-230 (2008). https://doi.org/10.1016/j.cell.2008.07.001
- Pizzo, A. et al. Behaviour of cytokine levels in serum and peritoneal fluid of women with endometriosis. Gynecol. Obstet. Invest. 54, 82-87 (2002). https://doi.org/10.1159/000067717
- Young, V. J., Brown, J. K., Saunders, P. T., Duncan, W. C. & Horne, A. W. The peritoneum is both a source and target of Tgf-Beta in women with endometriosis. PLoS ONE 9, e106773 (2014). https://doi.org/10.1371/journal.pone.0106773
- D'Hooghe, T. M., Xiao, L. & Hill, J. A. Cytokine profiles in autologous peritoneal fluid and peripheral blood of women with deep and superficial endometriosis. Arch. Gynecol. Obstet. 265, 40-44 (2001). https://doi.org/10.1007/s004040000126
- Harduin-Lepers, A. et al. Sialyltransferases functions in cancers. Front Biosci. (Elite Ed.) 4, 499-515 (2012).
- Lehoux, S. et al. Transcriptional regulation of the human St6gal2 gene in cerebral cortex and neuronal cells. Glycoconj. J. 27, 99-114 (2010). https://doi.org/10.1007/s10719-009-9260-y
- Krzewinski-Recchi, M. A. et al. Identification and functional expression of a second human beta-galactoside alpha2,6-sialyltransferase, St6gal Ii. Eur. J. Biochem. 270, 950-961 (2003). https://doi.org/10.1046/j.1432-1033.2003.03458.x
- Hsieh, C. C. et al. Elevation of beta-galactoside alpha2,6-sialyltransferase 1 in a fructoseresponsive manner promotes pancreatic cancer metastasis. Oncotarget 8, 7691-7709 (2017).
- Takashima, S., Tsuji, S. & Tsujimoto, M. Characterization of the second type of human beta-galactoside alpha 2,6-sialyltransferase (St6gal Ii), which sialylates galbeta 1,4glcnac structures on oligosaccharides preferentially. genomic analysis of human sialyltransferase genes. J. Biol. Chem. 277, 45719-45728 (2002). https://doi.org/10.1074/jbc.M206808200
- Aas-Eng, D. A., Asheim, H. C., Deggerdal, A., Smeland, E. & Funderud, S. Characterization of a promoter region supporting transcription of a novel human beta-galactoside alpha-2,6-sialyltransferase transcript in Hepg2 cells. Biochim. Biophys. Acta 1261, 166-169 (1995). https://doi.org/10.1016/0167-4781(94)00250-7
- Lu, J. et al. Beta-galactoside alpha2,6-sialyltranferase 1 promotes transforming growth factor-beta-mediated epithelial-mesenchymal transition. J. Biol. Chem. 289, 34627-34641 (2014). https://doi.org/10.1074/jbc.M114.593392
- Moustakas, A. & Heldin, C. H. Non-Smad Tgf-beta signals. J. Cell Sci. 118, 3573-3584 (2005). https://doi.org/10.1242/jcs.02554
- Mahajan, V. S. & Pillai, S. Sialic acids and autoimmune disease. Immunol. Rev. 269, 145-161 (2016). https://doi.org/10.1111/imr.12344
- Wang, X. et al. Siglec-9 is upregulated in rheumatoid arthritis and suppresses collagen-induced arthritis through reciprocal regulation of Th17-/Treg-cell differentiation. Scand. J. Immunol. 85, 433-440 (2017). https://doi.org/10.1111/sji.12543
- O'Sullivan, J. A., Carroll, D. J. & Bochner, B. S. Glycobiology of eosinophilic inflammation: contributions of Siglecs, glycans, and other glycan-binding proteins. Front. Med. (Lausanne) 4, 116 (2017).
- Wang, S. et al. Alpha2,6-linked sialic acids on N-glycans modulate the adhesion of hepatocarcinoma cells to lymph nodes. Tumour Biol. 36, 885-892 (2015). https://doi.org/10.1007/s13277-014-2638-x
- Belisle, J. A. et al. Identification of siglec-9 as the receptor for Muc16 on human Nk Cells, B cells, and monocytes. Mol. Cancer 9, 118 (2010). https://doi.org/10.1186/1476-4598-9-118
- Aalto, K. et al. Siglec-9 is a novel leukocyte ligand for vascular adhesion protein-1 and can be used in pet imaging of inflammation and cancer. Blood 118, 3725-3733 (2011).
- Crocker, P. R. Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signalling. Curr. Opin. Struct. Biol. 12, 609-615 (2002). https://doi.org/10.1016/S0959-440X(02)00375-5
- von Gunten, S. et al. Siglec-9 transduces apoptotic and nonapoptotic death signals into neutrophils depending on the proinflammatory cytokine environment. Blood 106, 1423-1431 (2005). https://doi.org/10.1182/blood-2004-10-4112
- Eroschenko, V. P. Difiore's Atlas of Histology with Functional Correlations. (Wolters Kluwer Health/Lippincott. Williams & Wilkins, Philadelphia, PA, USA, 2008).
- Hull, M. L., Johan, M. Z., Hodge, W. L., Robertson, S. A. & Ingman, W. V. Hostderived Tgfb1 deficiency suppresses lesion development in a mouse model of endometriosis. Am. J. Pathol. 180, 880-887 (2012). https://doi.org/10.1016/j.ajpath.2011.11.013
- Correa, L. F. et al. Tgf-beta induces endometriotic progression via a noncanonical, Klf11-mediated mechanism. Endocrinology 157, 3332-3343 (2016). https://doi.org/10.1210/en.2016-1194
- Wu, S., Grimm, R., German, J. B. & Lebrilla, C. B. Annotation and structural analysis of sialylated human milk oligosaccharides. J. Proteome Res. 10, 856-868 (2011). https://doi.org/10.1021/pr101006u
- Bode, L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22, 1147-1162 (2012). https://doi.org/10.1093/glycob/cws074
- Hill, D. R. & Newburg, D. S. Clinical applications of bioactive milk omponents. Nutr. Rev. 73, 463-476 (2015). https://doi.org/10.1093/nutrit/nuv009
- Chung, T. W. et al. Sialyllactose suppresses angiogenesis by inhibiting Vegfr-2 activation, and tumor progression. Oncotarget 8, 58152-58162 (2017).
Cited by
- Biological Functions and Analytical Strategies of Sialic Acids in Tumor vol.9, pp.2, 2018, https://doi.org/10.3390/cells9020273
- Physiological roles of heteromerization: focus on the two‐pore domain potassium channels vol.599, pp.4, 2018, https://doi.org/10.1113/jp279870
- Altered linkage pattern of N-glycan sialic acids in pseudomyxoma peritonei vol.31, pp.3, 2018, https://doi.org/10.1093/glycob/cwaa079
- Administration of vitamin E attenuates airway inflammation through restoration of Nrf2 in a mouse model of asthma vol.25, pp.14, 2018, https://doi.org/10.1111/jcmm.16675
- Cell‐free culture supernatant of Lactobacillus curvatus Wikim38 inhibits RANKL‐induced osteoclast differentiation and ameliorates bone loss in ovariectomized mice vol.73, pp.3, 2021, https://doi.org/10.1111/lam.13525
- A Possible Inhibitory Role of Sialic Acid on MUC1 in Peritoneal Dissemination of Clear Cell-Type Ovarian Cancer Cells vol.26, pp.19, 2021, https://doi.org/10.3390/molecules26195962
- Variability of serum IgG sialylation and galactosylation degree in women with advanced endometriosis vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-85200-x
- Label-free imaging and evaluation of characteristic properties of asthma-derived eosinophils using optical diffraction tomography vol.587, pp.None, 2018, https://doi.org/10.1016/j.bbrc.2021.11.084