• Title/Summary/Keyword: Tissue Engineering

Search Result 1,864, Processing Time 0.033 seconds

Computer Aided Diagnosis System for Evaluation of Mechanical Artificial Valve (기계식 인공판막 상태 평가를 위한 컴퓨터 보조진단 시스템)

  • 이혁수
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.421-430
    • /
    • 2004
  • Clinically, it is almost impossible for a physician to distinguish subtle changes of frequency spectrum by using a stethoscope alone especially in the early stage of thrombus formation. Considering that reliability of mechanical valve is paramount because the failure might end up with patient death, early detection of valve thrombus using noninvasive technique is important. Thus the study was designed to provide a tool for early noninvasive detection of valve thrombus by observing shift of frequency spectrum of acoustic signals with computer aid diagnosis system. A thrombus model was constructed on commercialized mechanical valves using polyurethane or silicon. Polyurethane coating was made on the valve surface, and silicon coating on the sewing ring of the valve. To simulate pannus formation, which is fibrous tissue overgrowth obstructing the valve orifice, the degree of silicone coating on the sewing ring varied from 20%, 40%, 60% of orifice obstruction. In experiment system, acoustic signals from the valve were measured using microphone and amplifier. The microphone was attached to a coupler to remove environmental noise. Acoustic signals were sampled by an AID converter, frequency spectrum was obtained by the algorithm of spectral analysis. To quantitatively distinguish the frequency peak of the normal valve from that of the thrombosed valves, analysis using a neural network was employed. A return map was applied to evaluate continuous monitoring of valve motion cycle. The in-vivo data also obtained from animals with mechanical valves in circulatory devices as well as patients with mechanical valve replacement for 1 year or longer before. Each spectrum wave showed a primary and secondary peak. The secondary peak showed changes according to the thrombus model. In the mock as well as the animal study, both spectral analysis and 3-layer neural network could differentiate the normal valves from thrombosed valves. In the human study, one of 10 patients showed shift of frequency spectrum, however the presence of valve thrombus was yet to be determined. Conclusively, acoustic signal measurement can be of suggestive as a noninvasive diagnostic tool in early detection of mechanical valve thrombosis.

Sargassum sp. Attenuates Oxidative Stress and Suppresses Lipid Accumulation in vitro (모자반추출물의 항산화활성 및 지방세포 생성억제 효과)

  • Kim, Jung-Ae;Karadeniz, Fatih;Ahn, Byul-Nim;Kwon, Myeong Sook;Mun, Ok-Ju;Kim, Mihyang;Lee, Sang-Hyeon;Yu, Ki Hwan;Kim, Yuck Yong;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.274-283
    • /
    • 2014
  • Oxidative stress causes tissue damage and facilitates the progression of metabolic diseases, including diabetes, cardiovascular heart diseases, and obesity. Lipid accumulation and obesity-related complications have been observed in the presence of extensive oxidative stress. As part of an ongoing study to develop therapeutic supplements, Sargassum sp. were tested for their ability to scavenge free radicals and intracellular reactive oxygen species (ROS), as well as to suppress lipid accumulation. Three species, S. hemiphyllum, S. thunbergii, and Sargassum horneri, were shown to scavenge free radicals in a di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) assay. In addition, Sargassum sp. was shown to scavenge intracellular ROS and to decrease nitric oxide (NO) production in $H_2O_2$ and lipopolysaccharide (LPS)-induced in RAW264.7 mouse macrophages, respectively. Taken together, the results suggest that Sargassum sp. possess huge potential to relieve oxidative stress and related complications, as well as lipid-induced oxidation. They indicate that S. hemiphyllum, S. thunbergii, and S. horneri are potent functional supplements that can produce beneficial health effects through antioxidant and antiobesity activities, with S. hemiphyllum being the most potent among the Sargassum sp. tested. A potential mechanism for the effect of Sargassum sp. on the suppression of lipid accumulation in differentiating 3T3-L1 mouse preadipocytes through deactivation of the peroxisome proliferator-activated receptor ${\gamma}$ (PPAR ${\gamma}$) is presented.

The Feasibility Study of MRI-based Radiotherapy Treatment Planning Using Look Up Table (Look Up Table을 이용한 자기공명영상 기반 방사선 치료계획의 타당성 분석 연구)

  • Kim, Shin-Wook;Shin, Hun-Joo;Lee, Young-Kyu;Seo, Jae-Hyuk;Lee, Gi-Woong;Park, Hyeong-Wook;Lee, Jae-Choon;Kim, Ae-Ran;Kim, Ji-Na;Kim, Myong-Ho;Kay, Chul-Seung;Jang, Hong-Seok;Kang, Young-Nam
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.237-242
    • /
    • 2013
  • In the intracranial regions, an accurate delineation of the target volume has been difficult with only the CT data due to poor soft tissue contrast of CT images. Therefore, the magnetic resonance images (MRI) for the delineation of the target volumes were widely used. To calculate dose distributions with MRI-based RTP, the electron density (ED) mapping concept from the diagnostic CT images and the pseudo CT concept from the MRI were introduced. In this study, the look up table (LUT) from the fifteen patients' diagnostic brain MRI images was created to verify the feasibility of MRI-based RTP. The dose distributions from the MRI-based calculations were compared to the original CT-based calculation. One MRI set has ED information from LUT (lMRI). Another set was generated with voxel values assigned with a homogeneous density of water (wMRI). A simple plan with a single anterior 6MV one portal was applied to the CT, lMRI, and wMRI. Depending on the patient's target geometry for the 3D conformal plan, 6MV photon beams and from two to five gantry portals were used. The differences of the dose distribution and DVH between the lMRI based and CT-based plan were smaller than the wMRI-based plan. The dose difference of wMRI vs. lMRI was measured as 91 cGy vs. 57 cGy at maximum dose, 74 cGt vs. 42 cGy at mean dose, and 94 cGy vs. 53 at minimum dose. The differences of maximum dose, minimum dose, and mean dose of the wMRI-based plan were lower than the lMRI-based plan, because the air cavity was not calculated in the wMRI-based plan. These results prove the feasibility of the lMRI-based planning for brain tumor radiation therapy.

Hepatoprotective Effects of Semisulcospira libertine Hydrolysate on Alcohol-induced Fatty Liver in Mice (알코올성 지방간 유발 마우스에서 다슬기 유래 가수분해물의 간 보호 효과)

  • Song, Eun Jin;Cho, Kyoung Hwan;Choo, Ho Jin;Yang, Eun Young;Jung, Yoon Kyoung;Seo, Min Gyun;Kim, Jong Cheol;Kang, Eun Ju;Ryu, Gi Hyung;Park, Beom Yong;Hah, Young-Sool
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.318-325
    • /
    • 2017
  • Alcoholic steatosis is a fundamental metabolic disorder and may precede the onset of more severe forms of alcoholic liver disease. In this study, we isolated enzymatichydrolysate from Semisulcospira libertine by alcalase hydrolysis and investigated the protective effect of Semisulcospira libertine hydrolysate on liver injury induced by alcohol in the mouse model of chronic and binge ethanol feeding (NIAAA). In an in vitro study, the hydrolysate protects HepG2 cells from ethanol toxicity. Liver damage was assessed by histopathological examination, as well as by quantitating activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). After the administration of S. libertina hydrolysate, fat accumulation and infiltration of inflammatory cells in liver tissues were significantly decreased in the NIAAA mouse model. The elevated levels of serum AST, ALT, and ALP activities, along with the lipid contents of a damaged liver, were recovered in experimental mice administrated with S. libertina hydrolysate, suggesting its role in blood enzyme activation and lipid content restoration within damaged liver tissues. Moreover, treatment with S. libertine hydrolysate reduced the expression rate of cyclooxygenase (COX-2), interleukin $(IL)-1{\beta}$, and IL-6, which accelerate inflammation and induces tissue damage. All data showed that S. libertine hydrolysate has a preventive role against alcohol-induced liver damages by improving the activities of blood enzymes and modulating the expression of inflammation factor, suggesting S. libertine hydrolysate could be a commercially potential material for the restoration of hepatotoxicity.

Studies on Changes of the Activity of the Hepatic cells, and Variations of Protein and Nucleic Acid Contents of the Liver Tissue with the Ovarian Development Phase of Female Boleophthalmus pectinirostris(Linnaeus) (자성(雌性) 짱뚱어, Boleophthalmus pectinirostris(Linnaeus)의 난소(卵巢) 발달단계(發達段階)에 따른 간세포(肝細布)의 활성변화(活性變化) 및 간조직(肝組織)의 단백질(蛋白質), 핵산함량(核酸含量)에 관(關)한 연구(硏究))

  • Chung, Ee-Yung;Lee, Keun-Kwang;Oh, Young-Nam
    • Korean Journal of Ichthyology
    • /
    • v.3 no.1
    • /
    • pp.48-57
    • /
    • 1991
  • Changes of the activities of the hepatic cells of female mud skipper, Boleophthalmus pectinirostris were investigated under transmission electron microscopy. Monthly changes of gonadosomatic index(GSI) and hepatosomatic index(HSI), variations of protein and nucleic acid contents(total RNA and DNA) of the liver tissues with the gonadal development phase were also studied. GSI began to increase from May(the growing stage), reaching the maximum value in late June(the mature stage), and then it began to decrease from late July(the degenerative stage), reaching the lowest value in late September. Monthly variations of HSI were negatively related to GSI. HSI decreased in the summer season when the ovary was getting mature and reached the maximum in mid October when the ovary was degenerating. In June(the mature stage), the female hepatic cells of the liver tissues became large and nuclei were hypertrophic. The amounts of glycogen particles and lipid droplets in the cells gradually decreased, while a number of granular endoplasmic reticulum increased. It was assumed that well-developed granular endoplasmic reticulum binding ribosomes are supposed to play the leading role in protein synthesis and deposition for vitellogenin in the cytoplasm. In July(the spawning period), glycogen particles and lipid droplets gradually increased, and then these substances were still observed in large quantity in August(the degenerative stage). The protein contents of the liver tissues with the gonadal phases of the ovaries were shown the maximum value($4.720{\pm}0.103\;mg/g$) in June, and afterwards gradually decreased being the minimum($3.640{\pm}0.130\;mg/g$) in July, and then gradually increased in August. The mean total RNA contents per gram of the liver tissues appeared the maximum($0.523{\pm}0.040\;mg/g$) in June, and afterwards gradually decreased to the minimum($0.158{\pm}0.006\;mg/g$) in July and slightly increased in August again. From these results, it could be assumed that protein contents were closely related to RNA contents. The mean total DNA contents per weight (gr) of the liver tissues appeared to be similar although there were some monthly fluctuations. The ratio of the mean total RNA/DNA were 0.745 in June, 0.262 in July, 0.341 in August respectively.

  • PDF

Estimation of Jaw and MLC Transmission Factor Obtained by the Auto-modeling Process in the Pinnacle3 Treatment Planning System (피나클치료계획시스템에서 자동모델화과정으로 얻은 Jaw와 다엽콜리메이터의 투과 계수 평가)

  • Hwang, Tae-Jin;Kang, Sei-Kwon;Cheong, Kwang-Ho;Park, So-Ah;Lee, Me-Yeon;Kim, Kyoung-Ju;Oh, Do-Hoon;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2009
  • Radiation treatment techniques using photon beam such as three-dimensional conformal radiation therapy (3D-CRT) as well as intensity modulated radiotherapy treatment (IMRT) demand accurate dose calculation in order to increase target coverage and spare healthy tissue. Both jaw collimator and multi-leaf collimators (MLCs) for photon beams have been used to achieve such goals. In the Pinnacle3 treatment planning system (TPS), which we are using in our clinics, a set of model parameters like jaw collimator transmission factor (JTF) and MLC transmission factor (MLCTF) are determined from the measured data because it is using a model-based photon dose algorithm. However, model parameters obtained by this auto-modeling process can be different from those by direct measurement, which can have a dosimetric effect on the dose distribution. In this paper we estimated JTF and MLCTF obtained by the auto-modeling process in the Pinnacle3 TPS. At first, we obtained JTF and MLCTF by direct measurement, which were the ratio of the output at the reference depth under the closed jaw collimator (MLCs for MLCTF) to that at the same depth with the field size $10{\times}10\;cm^2$ in the water phantom. And then JTF and MLCTF were also obtained by auto-modeling process. And we evaluated the dose difference through phantom and patient study in the 3D-CRT plan. For direct measurement, JTF was 0.001966 for 6 MV and 0.002971 for 10 MV, and MLCTF was 0.01657 for 6 MV and 0.01925 for 10 MV. On the other hand, for auto-modeling process, JTF was 0.001983 for 6 MV and 0.010431 for 10 MV, and MLCTF was 0.00188 for 6 MV and 0.00453 for 10 MV. JTF and MLCTF by direct measurement were very different from those by auto-modeling process and even more reasonable considering each beam quality of 6 MV and 10 MV. These different parameters affect the dose in the low-dose region. Since the wrong estimation of JTF and MLCTF can lead some dosimetric error, comparison of direct measurement and auto-modeling of JTF and MLCTF would be helpful during the beam commissioning.

  • PDF

Fulvestrant Does Not Have Antagonistic Effect on 17β-estradiol's Anti-proliferative Action in Cultured Chinese Hamster Ovarian Cell Line (17β-Estradiol의 CHO 세포 항 증식작용에 대한 fulvestrant의 효과)

  • Kim, Hyun Hee;Park, Hyeong Cheol;Min, Gyesik
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.173-180
    • /
    • 2014
  • Estrogen can promote or inhibit cellular proliferation depending on tissue cell types and physiological condition and acts through the signal transduction pathways mediated primarily by estrogen receptors. This study examined the effects of fulvestrant (Ful), a well-known antagonist for the estrogen receptor, on the action of $17{\beta}$-estradiol (E2) with respect to the proliferation and apoptosis of Chinese hamster ovarian (CHO) cells. We used different concentrations of E2, Ful, and E2 plus Ful during different treatment durations. Treatment with 15-40 ${\mu}M$ E2 significantly inhibited proliferation in a time-dependent manner, although it had no influence in concentrations up to 1 ${\mu}M$. Interestingly, Ful at 10-40 ${\mu}M$ also inhibited cellular proliferation in both a concentration- and time-dependent manner. In addition, Ful enhanced rather than decreased the inhibitory effect on cellular proliferation by E2 in combined treatment for 10 days. Thus, Ful does not appear to have an antagonistic effect on estrogen's anti-proliferative action in CHO cells. In TUNEL assays to confirm DNA fragmentation by E2 and/or Ful, CHO cells treated with 20 ${\mu}M$ E2 showed a TUNEL-positive reaction in most DAPI-stained nuclei, and cells treated with either 40 ${\mu}M$ Ful or 40 ${\mu}M$ Ful plus 20 ${\mu}M$ E2 also exhibited a TUNEL-positive reaction but at a lower rate compared to the E2-treated cells. These results indicate that Ful does not have an antagonistic effect on estrogen's anti-proliferative action in CHO cells, suggesting that the anti-proliferative and apoptosis-related mechanism(s) through DNA fragmentation by E2 and Ful may be mediated by different signal transduction pathways.

DISEASE DIAGNOSED AND DESCRIBED BY NIRS

  • Tsenkova, Roumiana N.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1031-1031
    • /
    • 2001
  • The mammary gland is made up of remarkably sensitive tissue, which has the capability of producing a large volume of secretion, milk, under normal or healthy conditions. When bacteria enter the gland and establish an infection (mastitis), inflammation is initiated accompanied by an influx of white cells from the blood stream, by altered secretory function, and changes in the volume and composition of secretion. Cell numbers in milk are closely associated with inflammation and udder health. These somatic cell counts (SCC) are accepted as the international standard measurement of milk quality in dairy and for mastitis diagnosis. NIR Spectra of unhomogenized composite milk samples from 14 cows (healthy and mastitic), 7days after parturition and during the next 30 days of lactation were measured. Different multivariate analysis techniques were used to diagnose the disease at very early stage and determine how the spectral properties of milk vary with its composition and animal health. PLS model for prediction of somatic cell count (SCC) based on NIR milk spectra was made. The best accuracy of determination for the 1100-2500nm range was found using smoothed absorbance data and 10 PLS factors. The standard error of prediction for independent validation set of samples was 0.382, correlation coefficient 0.854 and the variation coefficient 7.63%. It has been found that SCC determination by NIR milk spectra was indirect and based on the related changes in milk composition. From the spectral changes, we learned that when mastitis occurred, the most significant factors that simultaneously influenced milk spectra were alteration of milk proteins and changes in ionic concentration of milk. It was consistent with the results we obtained further when applied 2DCOS. Two-dimensional correlation analysis of NIR milk spectra was done to assess the changes in milk composition, which occur when somatic cell count (SCC) levels vary. The synchronous correlation map revealed that when SCC increases, protein levels increase while water and lactose levels decrease. Results from the analysis of the asynchronous plot indicated that changes in water and fat absorptions occur before other milk components. In addition, the technique was used to assess the changes in milk during a period when SCC levels do not vary appreciably. Results indicated that milk components are in equilibrium and no appreciable change in a given component was seen with respect to another. This was found in both healthy and mastitic animals. However, milk components were found to vary with SCC content regardless of the range considered. This important finding demonstrates that 2-D correlation analysis may be used to track even subtle changes in milk composition in individual cows. To find out the right threshold for SCC when used for mastitis diagnosis at cow level, classification of milk samples was performed using soft independent modeling of class analogy (SIMCA) and different spectral data pretreatment. Two levels of SCC - 200 000 cells/$m\ell$ and 300 000 cells/$m\ell$, respectively, were set up and compared as thresholds to discriminate between healthy and mastitic cows. The best detection accuracy was found with 200 000 cells/$m\ell$ as threshold for mastitis and smoothed absorbance data: - 98% of the milk samples in the calibration set and 87% of the samples in the independent test set were correctly classified. When the spectral information was studied it was found that the successful mastitis diagnosis was based on reviling the spectral changes related to the corresponding changes in milk composition. NIRS combined with different ways of spectral data ruining can provide faster and nondestructive alternative to current methods for mastitis diagnosis and a new inside into disease understanding at molecular level.

  • PDF

Characterization of MACS Isolated Cells from Differentiated Human ES Cells (인간 배아줄기세포로부터 분화된 세포에서 MACS 방법을 이용하여 분리한 세포의 특성에 대한 연구)

  • Cho, Jae Won;Lim, Chun Kyu;Shin, Mi Ra;Bang, Kyoung Hee;Koong, Mi Kyoung;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.3
    • /
    • pp.171-178
    • /
    • 2006
  • Objective: Human embryonic stem (ES) cells have a great potential in regenerative medicine and tissue engineering. The human ES cells could be differentiated into specific cell types by treatments of growth factors and alterations of gene expressions. However, the efficacy of guided differentiation and isolation of specific cells are still low. In this study, we characterized isolated cells from differentiated human ES cells by magnetic activated cell sorting (MACS) system using specific antibodies to cell surface markers. Methods: The undifferentiated hES cells (Miz-hESC4) were sub-cultured by mechanical isolation of colonies and embryoid bodies were spontaneously differentiated with DMEM containing 10% FBS for 2 weeks. The differentiated cells were isolated to positive and negative cells with MACS system using CD34, human epithelial antigen (HEA) and human fibroblast (HFB) antibodies, respectively. Observation of morphological changes and analysis of marker genes expression were performed during further culture of MACS isolated cells for 4 weeks. Results: Morphology of the CD34 positive cells was firstly round, and then it was changed to small polygonal shape after further culture. The HEA positive cells showed large polygonal, and the HFB positive spindle shape. In RT-PCR analysis of marker genes, the CD34 and HFB positive cells expressed endodermal and mesodermal genes, and HEA positive cells expressed ectodermal genes such as NESTIN and NF68KD. The marker genes expression pattern of CD34 positive cells changed during the extension of culture time. Conclusion: Our results showed the possibility of successful isolation of specific cells by MACS system from undirected differentiated human ES cells. Thus, MACS system and marker antibodies for specific cell types might be useful for guided differentiation and isolation of specific cells from human ES cells.

Biocompatibility and Histopathologic Change of the Acellular Xenogenic Pulmonary Valved Conduit Grafted in the Right Ventricular Outflow Tract (우심실 유출로에 이식한 무세포화 이종 폐동맥 판막도관의 생체 적합성 및 조직병리학적 변화양상에 대한 연구)

  • 허재학;김용진;박현정;김원곤
    • Journal of Chest Surgery
    • /
    • v.37 no.6
    • /
    • pp.482-491
    • /
    • 2004
  • Background: The xenogenic or allogenic valves after in Vitro repopulation with autologous cells or in vivo repo-pulation after acellularization treatment to remove the antigenicity could used as an alternative to synthetic polymer scaffold. In the present study, we evaluated the process of repopulation by recipient cell to the acellu-larized xenograft treated with NaCl-SDS solution and grafted in the right ventricular outflow tract. Material and Method: Porcine pulmonary valved conduit were treated with. NaCl-SDS solution to make the grafts acellularized and implanted in the right ventricular outflow tract of the goats under cardiopulmonary bypass. After evaluating the functions of pulmonary valves by echocardiography, goats were sacrificed at 1 week, 1 month, 3 months, 6 months, and 12 months after implantation, respectively. After retrieving the implanted valved conduits, histopathologic examination with Hematoxylin-Eosin, Masson' trichrome staining and immunohistochemical staining was performed. Result: Among the six goats, which had been implanted with acellularized pulmonary valved conduits, five survived the expected time period. Echocardiographic examinations for pulmonary valves revealed good function except mild regurgitation and stenosis. Microscopic analysis of the leaflets showed progressive cellular in-growth, composed of fibroblasts, myofibroblasts, and endothelial cells, into the acellularized leaflets over time. Severe inflammatory respon-se was detected in early phase, though it gradually decreased afterwards. The extracellular matrices were regenerated by repopulated cells on the recellularized portion of the acellularized leaflet. Conclusion: The acellularized xenogenic pulmonary valved conuits were repopulated with fibroblasts, myofibroblasts, and endothelial cells of the recipient and extracellullar matrices were regenerated by repopulted cells 12 months after the implantation. The functional integrity of pulmonary valves was well preserved. This study showed that the acellularized porcine xenogenic valved conduits could be used as an ideal valve prosthesis with long term durability.