• Title/Summary/Keyword: Tire slip

Search Result 93, Processing Time 0.021 seconds

Design of a Servo Controller for Antilock Brake Systems Based on the Automotive Tire Model (차륜 모델에 기초한 차량 ABS의 서보 제어기 설계)

  • Hwang, I-Cheol
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.42-47
    • /
    • 2015
  • This paper studies on the design of a servo controller for an antilock brake system(ABS) based on the car tire model. First, a nonlinear differential equation of the car tire is constructed and its linearization model is obtained by Taylor's series. Second, a servo controller based on the mathematical model is analytically designed to obtain the maximum brake force, where the tire velocity and the slip ratio of car tire are respectively controlled to the given command values. Third, it is theoretically shown that the proposed control algorithm has good usefulness in ABS.

A Study of Tire Road Friction Estimation for Controlling Rear Wheel Driving Force of 4WD Vehicle (4WD 차량의 후륜 구동력 제어를 위한 구동시 노면마찰계수 추정에 관한 연구)

  • Park, Jae-Young;Shim, Woojin;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.512-519
    • /
    • 2016
  • In this study, the tire road friction estimation(TRFE) algorithm for controlling the rear wheel driving force of a 4WD vehicle during acceleration is developed using a standard sensor in an ordinary 4WD passenger car and a speed sensor. The algorithm is constructed for the wheel shaft torque, longitudinal tire force, vertical tire force and maximum tire road friction estimation. The estimation results of shaft torque and tire force were validated using a torque sensor and wheel force transducer. In the algorithm, the current road friction is defined as the proportion calculated between longitudinal and vertical tire force. Slip slop methods using current road friction and slip ratio are applied to estimate the road friction coefficient. Based on this study's results, the traction performance, fuel consumption and drive shaft strength performance of a 4WD vehicle are improved by applying the tire road friction estimation algorithm.

Characteristics of Tire-Road Wear Particles Produced on Indoor Parking Garage Ramp

  • Uiyeong Jung;Eunji Chae;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.59 no.3
    • /
    • pp.97-107
    • /
    • 2024
  • Indoor parking garages have concrete-paved inclined ramps, contributing to high tire friction and increased slip angles. Therefore, the abrasion behavior of tire treads on an indoor parking garage ramp differs from those on common asphalt-paved roads, leading to variations in the generated TRWPs. The TRWP densities ranged from low (< 1.1 g cm-3) to high (> 1.8 g cm-3), and the degree of mineral particles adhering to the surface of tire wire particles increased with density. The densities and aspect ratios of the TRWPs generated in the parking garage varied depending on the ascent and descent ramps and the slip angles of tires. The TRWPs generated in the parking garage were distributed at a lower density than those produced on asphalt-paved roads and had lower aspect ratios. TRWPs generated from tires at large slip angles mostly exhibited densities below 1.1 g cm-3 on the ascent and descent ramps in the parking garage. Such low-density TRWPs can be easily resuspended by traffic in the air and may remain suspended in aquatic environments for prolonged periods upon entering rivers and seas.

A Study on Lateral Tire-road Friction Coefficient Estimation Using Tire Pneumatic Trail Information (타이어 뉴메틱 트레일 정보를 활용한 횡방향 타이어 노면 마찰 계수에 관한 연구)

  • Han, Kyoungseok;Choi, Seibum
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.310-318
    • /
    • 2016
  • The demands for vehicle safety systems such as ABS and ESC have been increased. Accurate vehicle state estimation is required to realized the abovementioned systems and tire-friction coefficient is crucial information. Estimation of lateral tire-road friction coefficient using pneumatic trail information is mainly dealt in this paper. Pneumatic trail shows unique characteristics according to the wheel side slip angle and these property is highly sensitive to vehicle lateral motion. The proposed algorithm minimizes the use of conventional tire models such as magic formula, brushed tire model and Dugoff tire model. The pure side slip maneuver, which means no longitudinal dynamics, is assumed to achieve the ultimate goal of this paper. A simulation verification using Carsim and Simulink is performed and the results show the feasibility of the proposed algorithms.

Analysis of the Frictional Behavior of Rubber Block (고무 블록의 마찰 거동 해석)

  • Kim, Doo-Man;Yoo, Hyun-Seung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.3
    • /
    • pp.16-22
    • /
    • 2006
  • The friction and wear of tire determined by frictional behavior of tire tread that translate driving force, cornering force and braking force between automobile and road as a result of frictional behavior of each tread block. The tire tread block is representative case of rubber block doing frictional behavior. In this paper, frictional behavior of rubber block under compressive force and shear force was analytically obtained by using slip starting position parameter instead of friction coefficient which is uncertain to express exact value between rubber and other surfaces yet. And local coefficients of friction were calculated as a function of compressive force, shear force, shear modulus of rubber, shape factor and slip starting position.

  • PDF

TECHNIQUE OF SEPARATE MEASURING SIDE SLIP FOR TOE ANGLE AND CAMBER ANGLE

  • Nozaki, H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.681-686
    • /
    • 2006
  • The current flat type side slip tester measures only the total side slip. Therefore, measurement techniques which can be used to determine the side slip for each alignment element were examined. Because the side slip related to the camber angle varies depending on the unit load per travel wheel while the side slip related to the toe angle does not on the unit per travel wheel, but depends only on the direction of the tire, the side slip for each alignment element can be determined separately.

The Real Time Measurement of Dynamic Radius and Slip Ratio at the Vehicle (차량에서 실시간 동반경 및 슬립율 측정)

  • Lee, Dong-Kyu;Park, Jin-Il;Lee, Jong-Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.89-94
    • /
    • 2006
  • The tire delivering power generated from engine to the ground pulls a vehicle to move. Radius of tires is changeable due to elasticity that depends on the speed of vehicle and traction force. The main objectives on this study are real time measurement of dynamic radius and slip ratio according to the speed and traction force. The dynamic radius is proportional to speed and traction force. According to measurement, the dynamic radius is increased about 3mm under 100km/h compared to stop. It is also increased about 1.5mm when a traction force is supplied as much as 4kN compared to no load state at low speed. There is no strong relationship between slip ratio and vehicle speed. The slip ratio is measured up to 4% under WOT at first stage gear. Through this research, the method of measuring dynamic radius and slip ratio is set up and is expected to be applied to the measurement of traction force in chassis dynamometer or accelerating and climbing ability.

A Study on Zero-Condition of ASAE for Estimating Slip-Traction Relationship of Off-Road Vehicles (오프로드차량의 슬립-견인력 관계의 평가에 사용되는 ASAE 제로조건에 관한 연구)

  • 박원엽;이규승;오만수;박준걸
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.501-512
    • /
    • 2002
  • Traction performance of off-road vehicles is estimated using slip-traction relationships Two zero condition accepted by ASAE have been used widely to obtain the slip-traction relationships of off-road vehicles. This study was carried out using the soil bin systems to investigate the characteristic of slip-traction curves obtained using two zero conditions defined by ASAE. which are driving and driven zero condition, and to present disadvantage of slip-traction relationship based on two zero conditions of ASAE. The results of this study are summarized as follows : 1. For the driving zero condition, the curve of slip-traction relationship shows some issues. The first question is that the slip is zero when the traction is zero. The second question is that the value of slip is smaller than that of corresponding real slip, as the rolling radius decreased f3r the setting zero condition with driving wheel. 2. For the driven zero condition. slip occurs when the traction is zero, which is more realistic results than driving zero condition. But when a zero condition is set, skid occurs and this result increased the rolling radius of tire and increased slip value f3r the specific traction value of whole slip range. This kind of trend was getting bigger as the soil is softer, or the tire inflation pressure is higher. 3. From the results of this study, it was found that slip-traction relationship obtained by two zero conditions of ASAE is not realistic in estimating the traction performance of off-road vehicles. And also slip-traction relationship obtained for the same experimental condition showed different result in accordance with chosen zero condition,

A Study on the Estimation of Frictiom Coefficient between Tire and Road Surface Using Running Car data (실차 데이터를 이용한 차륜과 노면간의 마찰계수 예측에 관한 연구)

  • 우관제;산기준일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.207-213
    • /
    • 1999
  • In this study, the possibility of estimation of friction coefficient between tire and road surface using running car data are checked. To get necessary data, such as tire and car velocities and braking force, a test car is driven with certain magnitude of decelerations from pre-set initial velocities to stop . The data are used to estimate friction coefficient with property chosen parameters , e.g,, driving stiffness, pressure distribution functions, etc. Experimental results show that running data car be used with properly chosen parameters to estimate friction coefficient.

  • PDF

A Study on Effect Analysis and Design Optimization of Tire and ABS Logic for Vehicle Braking Performance Improvement (차량 제동성능 개선을 위한 타이어 인자 분석 및 최적설계에 대한 연구)

  • Ki, Won Yong;Lee, Gwang Woo;Heo, Seung Jin;Kang, Dae Oh;Kim, Ki Woon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.581-587
    • /
    • 2016
  • Braking is a basic and an important safety feature for all vehicles, and the final braking performance of a vehicle is determined by the vehicle's ABS performance and tire performance. However, the combination of excellent ABS and tires will not always ensure good braking performance. This is due to the fact that tire performance has non-linearity and uncertainty in predicting the repeated increase and decrease of wheel slip when activating the ABS, thus increasing the uncertainty of tire performance prediction. Furthermore, existing studies predicted braking performance after using an ABS that used a wheel slip control as a controller, which was different from an actual vehicle's ABS that controlled angular acceleration, therefore causing a decrease in the prediction accuracy of the braking performance. This paper reverse-designed the ABS that controlled angular acceleration based on the information on brake pressure, etc., which were obtained from vehicle tests, and established a braking performance prediction analysis model by combining a multi-body dynamics(MBD) vehicle model and a magic formula(MF) tire model. The established analysis model was verified after comparing it with the results of the braking tests of an actual vehicle. Using this analysis model, this study analyzed the braking effect by vehicle factor, and finally designed a tire that had optimized braking performance. As a result of this study, it was possible to design the MF tire model whose braking performance improved by 9.2 %.