• Title/Summary/Keyword: Tire pressure

Search Result 191, Processing Time 0.026 seconds

Measurements of Soil Deformation Using 3-Dimensional Form Determination (3차원 형상계측법을 이용한 토양변형 측정)

  • 전형규
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.409-414
    • /
    • 2001
  • This paper reports a technique for measuring a three-dimensional soil deformation and a simplified method to determine the three-dimensional contact area of agricultural tires in a soil bin. A Pirelli 12.4R28 radial-ply tire was used on soft soil. Effects of dynamic load and inflation pressure were determined using the equipment for measuring soil deformation on the soil surface. Soil deformation measurements were made under three conditions of over-load (59kPa-14.2kN), rated-load (108kPa-11.8kN) and under-load (157kPa-9.3kN) in the combinations of the inflation pressures (kPa) and the tire load (kN). The results from three conditions were shown that the contact area of the over-load increased considerably bigger than those of the rated-load and the under-load. Therefore, to regulate soil deformation, the inflation pressure and the tire load should be set according to the soil conditions.

  • PDF

Computational Complexity Comparison of TPMS Beamformers for Interference Suppression (간섭제거를 위한 TPMS 빔형성기들의 복잡도 비교)

  • Kim, Seong-Min;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1327-1335
    • /
    • 2012
  • TPMS (Tire Pressure Monitoring System) is a safety assistant system to prevent the serious accident due to the damaged tire by the abnormal tire pressure. It is designed to transmit the measured data for pressure and temperature of tires from the sensor unit installed in each tire to signal processing unit installed in a vehicle. Based on the received information, a driver monitors the condition of tires using a display device, to maintain the optimum travelling condition. Since TPMS should employ the wireless communication technique, it may suffer from various interferences from external electrical or electronics devices. In order to suppress them, the beamforming techniques such as switching, minimum-variance distortionless-response (MVDR), and generalized sidelobe canceler (GSC) have been considered for TPMS. In this paper, we calculate computational complexities of three beamformers and suggest mathematical basis to compare their performance of the complexity.

Effects of Inflation Pressure on Tractive Performance of Bias-Ply Tires (공기압이 바이어스 플라이 타이어의 견인 성능에 미치는 영향)

  • 이동렬;김경욱;정병학
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 1998
  • This study was intended to investigate experimentally the effect of inflation pressure on tractive performance of bias-ply tires for agricultural tractors. Traction tests were conducted at the three velocities of 3, 4, and 5.5km/h under few different surface conditions using a 13.6-28 6PR bias-ply tire as driving wheel of the test tractor. When the inflation pressure was reduced from 250kPa to 40kPa by a decrement of either 30 or 50kPa depending upon the test surface conditions, some of the test results showed that the tractive coefficient and efficiency were increased maximally by 40% and 17%, respectively, at 20% slippage. However, it was failed to derive any consistent rules depicting the effect of inflation pressure of bias ply tires on the tractive performance of tractors.

  • PDF

Effects of Distribution of Axle Load and Inflation Pressure of Tires on Fuel Efficiency of Tractor Operations (차축의 중량 분포와 타이어의 공기압이 트랙터 작업의 연료 효율에 미치는 영향)

  • Lee, Jin-Woong;Kim, Kyeong-Uk;Gim, Dong-Hyeon;Choi, Kyu-Jeong
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.303-313
    • /
    • 2011
  • This study was conducted to investigate the effects of axle weight distribution and inflation pressure of tire on the fuel economy of tractors as well as operational range of tractor engine in terms of engine speed and power when a 4WD tractor of 38.2 kW rated power at 2500 rpm is used for plowing and flooded-field rotavating in paddy fields. (1) Plowing operation required an average engine power of 9.6~13.5 kW which equals 25~35% of rated PTO power. Engine speed ranged from 1,320.4 to 1,737.4 rpm, work velocity from 3.4 to 4.8 km/h, and fuel consumption from 3.2 to 4.2 L/h, respectively. (2) Flooded-field rotavating required an average engine power of 11.5~18.5 kW which equals 30~48.4% of rated PTO power. Out of this 6.2~12.2 kW was used for PTO power. Engine speed ranged from 1,557 to 2,067 rpm, work velocity from 2.5~5.4 km/h and fuel consumption from 3.2~5.5 L/h, respectively. (3) Axle weight distribution, inflation pressure of tire and moisture content of soil did not affect significantly the specific volumetric fuel consumption but affected significantly the fuel consumption per unit area of operation. Fuel savings amounted to 65% in plowing operation and 20% in flooded-field rotavating when the axle weight distribution and inflation pressure of tire were optimally adjusted. (4) Optimal adjustment of axle weight distribution and inflation pressure of tire are expected to save fuel consumption by 10~65% per unit area of operation in plowing and 10~20% in flooded-field rotavating.

A Experimental study on natural frequency measurement of passenger car tire under the load and rotation (하중을 받고 회전하는 승용차 타이어의 고유진동수 측정에 관한 실험적 연구)

  • 김병삼;홍동표;김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.601-606
    • /
    • 1993
  • The natural frequency measurement of passenger car tire under the load and rotation are studied. In order to obtain theoretical natural frequency and mode shape, the plane vibration of a tire is modeled to that of circular beam. By using the Tickling method based on Hamilton's principle, theoretical results are determined by considering tension force due to tire inflation pressure, rotational velocity and tangential, radial stiffness. Modal parameters varying the inflation pressure, load, rotational velocity are determined experimentally by using frequency response function method. The results show that experimental conditions are parameter for shifting of natural frequency.

  • PDF

An Experimental Study on the Measurement of Radial Directional Natural Frequency in a Passenger Car Tire Roboting under the Load (하중을 받고 회전하는 승용차 타이어의 반경방향 고규진동수 측정에 관한 실험적 연구)

  • Kim, Byoung-Sam;Hong, Dong-Pyo;Chi, Chang-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.1-13
    • /
    • 1996
  • The measurement of radial directional natural frequency ina passenger car tire rotating under the load is studied. In order to obtain theoretical matural frequency and mode shape, the ploane vibration of a tire is modeled to that of circular beam. By esing the Tieking method based on Hamiltons's principle, theoretical results are determined by considering tension horce due to tire inflation pressure, retational velocity and tangential, radial stiffness. Radial directional modal parameters varying with the inflation pressure, load, rotational velocity are experimentally determined by using frequency response function method. The results show that experimental conditions canbe considered as the parameters which shift the natural frequency.

A study on the vibration characteristics of pssenger car radial tire (승용차 타이어의 진동 특성에 관한 연구)

  • 김병삼;이태근;양성모;정태진
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.76-83
    • /
    • 1993
  • The vibration characteristics of radial tire are studied. In order to obtain theoretical natural frequency and mode shape, the plane vibration of a tire is modeled to that of circular beam. By using the Tielking method based on Hamilton's principle, theoretical results are determined by considering tension force due to tire inflation pressure, rotational velocity and tangential, radial stiffness. Modal parameters varying the inflation pressure are determined experimentally by using the transfer function method. Results show that material property and wear are parameter for shifting of natural frequency and damping.

  • PDF

Optimization of Honeycomb Spoke in Non-pneumatic Tire (비공기압 타이어에 사용되는 Honeycomb Spoke의 최적화)

  • Lee, Jinwook;Jang, Inhwan;Han, Gyumo
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.204-215
    • /
    • 2017
  • Unlike existing pneumatic tire, NPT(Non-Pneumatic Tire) is a tire replacing air pressure with spokes. NPT has no problem of punk which pneumatic tire has and doesn't need to maintain air pressure. Also it can be used in space where temperature change sharply. In this regard, NPT are attracting attention as next-generation wheels. For optimizing Honeycomb structure, we applied the load to various Honeycomb structure which forms NPT, performed FEM(finite element analysis) using Edison and compared each results.

  • PDF

Stress Analysis of Automotive Tire at Contact on Road Surface (노면에 접촉된 자동차 타이어의 응력 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.40-45
    • /
    • 2009
  • This study is analyzed by stress contour of automotive tire at contact on road surface. Maximum equivalent stress as 61200Pa is shown on the lower mid part in case of tire contacted on road surface. As the air pressure of tire increases, maximum total deformation as 5mm is shown on the side part of tire. It can be shown that the side part of tire is unstabilized. There is no load effect on tire at its upper and lower directions. When the moment applied on the side of tire is increased 1.4 times as its value, the value of maximum principal stress is increased 1.4 times. The stress at the tire is in proportion to the moment applied on the its side. The tire tends to incline toward its side by this moment.

  • PDF