• Title/Summary/Keyword: Tire Pressure Monitoring System (TPMS)

Search Result 19, Processing Time 0.021 seconds

A Study on the Design of decision logic for n Tire Pressure Monitoring System (타이어 공기압 모니터링 시스템의 판단 로직 설계에 관한 연구)

  • Kim Byeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.285-290
    • /
    • 2006
  • In a Vehicle, Safety is the most important factor for drivers. It is well known that tire pressure lower than normal reduces the safety of the vehicle. In a consideration of active safety, tire pressure monitoring system is absolutely required. Tire pressure monitoring using in-tire pressure sensors with an RE data link have proven to be best approach to measuring tire pressure over the widest range of operating conditions. In this paper, we describe the parameters of TPMS, the characteristic of tire pressure and temperature compensation. These are the main factors to design the decision logic. We will show the guidelines for TPMS logic development considering environment variables and vehicle conditions.

  • PDF

Generalized Sidelobe Canceler for TPMS Interference Cancellation (TPMS 간섭제거를 위한 Generalized Sidelobe Canceler)

  • Park, Cheol;Hwang, Suk-Seung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.663-668
    • /
    • 2012
  • A TPMS(Tire Pressure Monitoring System) is a wireless communication system designed to monitor the pressure and temperature of pneumatic tires of a vehicle. In order to provide the aid in protecting a driver, this system reports tire pressure information to the driver of the vehicle. Since the wireless communication technique should be employed to transmit the TPMS data from each tire to signal processing unit in the vehicle, it suffers from interference signals from external electrical or electronics equipments. In this paper, we propose the TPMS interference cancellation technique based on GSC(Generalized Sidelobe Canceler), which does not have only the excellent performance like MVDR(Minimum-Variance-Distortionless-Response) but also has the low computational complexity comparing with MVDR. The performance of interference suppression is conformed by computer simulation examples.

The development of a variable capacitive pressure sensor for TPMS(tire pressure monitoring system) (TPMS 적용을 위한 가변 정전 용량형 압력센서 개발)

  • Choi, Bum-Koo;Kim, Do-Hyung;Oh, Jae-Geun
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.265-271
    • /
    • 2005
  • In this study, a variable capacitive pressure sensor is fabricated for TPMS (Tire Pressure Monitoring System). This study is for developing sensors which consecutively measure the tire pressure given as 30 psi from the industrial standard. For improving non-linearity of the prior capacitive pressure sensors, it is suggested that touch mode capacitive pressure sensor be applied. In addition, initial capacitance is designed as small as possible for the conformity to the wireless sensor. ANSYS, commercial FEA package, is used for designing and simulating the sensor. The device is progressed by MEMS (Micro Electro Mechanical Systems) fabrication and packaged with PDMS. The result is obtained sensitivity, 1 pF/psi, through a pressure test. The simulation result is discrepant from experiment one. Wafer's uniformity is presumed as the main reason of discrepancy.

Computational Complexity Comparison of TPMS Beamformers for Interference Suppression (간섭제거를 위한 TPMS 빔형성기들의 복잡도 비교)

  • Kim, Seong-Min;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1327-1335
    • /
    • 2012
  • TPMS (Tire Pressure Monitoring System) is a safety assistant system to prevent the serious accident due to the damaged tire by the abnormal tire pressure. It is designed to transmit the measured data for pressure and temperature of tires from the sensor unit installed in each tire to signal processing unit installed in a vehicle. Based on the received information, a driver monitors the condition of tires using a display device, to maintain the optimum travelling condition. Since TPMS should employ the wireless communication technique, it may suffer from various interferences from external electrical or electronics devices. In order to suppress them, the beamforming techniques such as switching, minimum-variance distortionless-response (MVDR), and generalized sidelobe canceler (GSC) have been considered for TPMS. In this paper, we calculate computational complexities of three beamformers and suggest mathematical basis to compare their performance of the complexity.

TPMS Interference Suppression Based on Beamforming (Beamforming을 이용한 TPMS 간섭제거)

  • Hwang, Suk-Seung;Kim, Seong-Min;Park, Cheol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.180-185
    • /
    • 2011
  • The TPMS(Tire Pressure Monitoring System) is an electronic system designed to display the air pressure inside the pneumatic tires and report real-time tire-pressure information to the driver of the vehicle, either via a gange, a pictogram display, or a simple low-pressure warning light. Although the data measured by TPMS sensor is transmitted to internal signal processer in a vehicle through wireless communication, the receiver may suffers from various interferences such as amateur radio station, RFID(Radio-Frequency IDentification) for controlling container, RKE(Remote Keyless Entry) signal, and so on. In this paper, we consider beamforming technology to suppress various high-power interference signals for the TPMS wireless communications. Also, we propose the proper data structure and antenna arrangement for the beamformer inside the vehicle. The performance for the interference suppression is illustrated by computer simulation example.

Developmemt of automobile sensor monitoring system (자동차 센서 모니터링 시스템 개발)

  • Choi, Nakg-Won;Lee, Sang-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.150-155
    • /
    • 2005
  • We propose a newly developed automobile sensor monitoring system incorporated with a tire pressure monitoring sensor(TPMS). The RF-transmitter based on a tire pressure sensor, sends a frame data about measured tire-pressure to RF receiver. And the various sensing signals based on sensors such as fuel-level sensor, engine oil level sensor and temperature sensors, are converted into 10-bit digital data. The microprocessor displays converting data such as tire pressure, trip distance, fuel quantity, coolant temperature and car-room temperature, on LCD panel. The proposed system can be successfully adapted to monitoring of the tire pressure and various automobile sensors.

Assessment Method of Effective Data for Duplex TPMS Communications (TPMS 양방향 통신을 위한 유효 데이터 판정기법)

  • Kim, Seong-Min;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.499-505
    • /
    • 2012
  • TPMS(Tire Pressure Monitoring System) using the wireless communication technique is defined as the safety aid system to efficiently realize and manage the condition of tires in the vehicle. The wireless communication system of TPMS should suffers from various noise and interferences such as signals of each tire sensor or outside electrical equipments. In order to retain the data reliability of TPMS, we propose an assessment method of the data reliability based on signal-to-interference and noise ratio (SINR) of the received signal. The proposed technique can be widely applied to wireless duplex communication systems based on various sensors. We verify critical SINR values to satisfy data reliabilities of 95%, 97%, and 99% through computer simulation.

A Consideration for a Protocol Supporting Tire Pressure Monitoring System (타이어 압력 모니터링 시스템의 호환성을 지원하는 프로토콜 고찰)

  • Bae, Byoung-Chul;Seo, Hae-Moon;Lee, In-Soo;Nam, Yoon-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.6
    • /
    • pp.335-344
    • /
    • 2011
  • The Tire Pressure Monitoring System(TPMS) is often used recently. However, the standards and functions are very different. Even though the regulation requires all vehicles install the TPMS, there is no a standard of a Physical and Media access control protocol which provides compatibility with other systems. In this paper, we propose a MAC protocol based on the international standard and an energy efficient hybrid RF system platform. The MAC protocol provides compatibility of the TPMS with other systems and the RF system platform reduces energy consumption significantly.

Interference Suppression Based on Switching Beamforming for TPMS (스위칭 빔형성기 기반의 TPMS 용 간섭제거 기술)

  • Park, Cheol;Kim, Seong-Min;Hwang, Suk-Seung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.436-441
    • /
    • 2011
  • A TPMS is a wireless communication system designed to monitor its condition inside the pneumatic tires on various types of vehicles. These systems report the tire pressure information to the driver of the vehicle. While wireless communications is used to transmit the measurement data from TPMS sensors to a central processing unit in the vehicle, it suffers from the various interferences such as sensors of each tire or outside electrical equipments. Based on the conventional beamformer, a switching beamforming technique is proposed to minimize the interference and efficiently receive valid data. Moreover, in order to minimize the interference and reduce power consumption for communication, a system with unique Gold Code is presented for each tire. The performance of interference suppression is illustrated by computer simulations.

Study on the Standardization for Tire Pressure Monitoring System (타이어 공기압 감지 장치 기술기준 및 표준화 연구)

  • Chun, Jae-Young;Cho, Pyung-Dong;Lee, Hyung-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.721-724
    • /
    • 2005
  • 미국, 유럽에서는 315MHz, 433.92MHz를 아마추어 무선국과 공유하여 차량용 주파수로 활용하고 있다. 참고로, 미국 고속도로 안전위원회는 TPMS(Tire Pressure Monitoring System)를 2003${\sim}$2006년 까지 미국 내 생산 차량 및 수입차량에 대해 TPMS 센서 장착을 100% 의무 적용하고 있다. 433.92MHz는 국내에서 이미 아마추어 무선 업무용 주파수로 할당되어 사용되고 있으며, 현재 TPMS 수입차량의 국내 도입을 위한 주파수 분배 및 기술 기준이 마련되어 있지 않은 상황이다. 향후 해외 수입차량의 국내 도입 및 국내 차량의 해외 수출을 고려할 경우 국제 기준에 부합하면서 국내 전파환경에 적합한 주파수 분배 및 기술 기준의 마련이 필요하다.

  • PDF