• Title/Summary/Keyword: Tire Pressure

Search Result 191, Processing Time 0.028 seconds

Failure Studies on the Wear Scars of an Automotive Tire (차량용 타이어의 마멸손상에 관한 고장사례 연구)

  • Lee, II-Kwon;Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.23 no.5
    • /
    • pp.228-233
    • /
    • 2007
  • This paper presents the case studies on the friction related wears of an automotive tire, which is strongly connected to the safety and comfort of a driver during a running of a car. Wear scars of a tire tread are affected by various causes such as an air pressure, a wheel alignment, a driving speed, road conditions, starting and braking habits of a driver. The data were collected from used tires for a replacement at the car service center. Most of the wear problems came from the improper repair and adjustment of revolving components, which cause an unbalanced wear of a tread part of a tire. Thus, the regular checking of a tire radically reduces the wear scars of a tire and may increase a driving safety and a fuel economy of a car and a wear life of a tire.

Ride Comfort Analysis of Passenger Vehicle Featuring ER Damper with Different Tire Pressure (타이어 공기압에 따른 ER 댐퍼 장착 승용차의 승차감분석)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.210-216
    • /
    • 2016
  • In this work, performance analysis to improve ride comfort of an ER (electrorheological) fluid damper for a mid-sized passenger vehicle in terms of tire pressure is presented. An ER damper by considering specification for a mid-sized commercial passenger vehicle is proposed and mechanically designed. After manufacturing and assembling the proposed ER damper with design parameters, their performance such as field-dependent damping forces are experimentally measured. A quarter-vehicle ER ECS (Electronic Control Suspension) system consisting of the ER damper, sprung mass, spring, sky-hook controller and tire is constructed to analysis the ride comfort performances. Vertical tire stiffness with different tire pressure is experimentally measured and investigated. In addition, ride comfort analysis such as vertical acceleration root mean square (RMS) of sprung mass is investigated under bump road using quarter-vehicle test equipment.

Performance Analysis with Different Tire Pressure of Quarter-vehicle System Featuring MR Damper (MR 댐퍼를 장착한 1/4차량의 타이어 공기압에 따른 성능분석)

  • Sung, Kum-Gil;Lee, Ho-Guen;Choi, Seung-Bok;Park, Min-Kyu;Park, Myung-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.249-256
    • /
    • 2010
  • This paper presents performance analysis of a quarter-vehicle magneto-rheological(MR) suspension system with respect to different tire pressure. As a first step, MR damper is designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial mid-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the manufactured MR damper, the quarter-vehicle MR suspension system consisting of sprung mass, spring, tire and the MR damper is constructed in order to investigate the ride comfort. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of quarter-vehicle MR suspension system. Ride comfort characteristics such as vertical acceleration RMS and weighted RMS of sprung mass are evaluated under various road conditions.

The development of a variable capacitive pressure sensor for TPMS(tire pressure monitoring system) (TPMS 적용을 위한 가변 정전 용량형 압력센서 개발)

  • Choi, Bum-Koo;Kim, Do-Hyung;Oh, Jae-Geun
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.265-271
    • /
    • 2005
  • In this study, a variable capacitive pressure sensor is fabricated for TPMS (Tire Pressure Monitoring System). This study is for developing sensors which consecutively measure the tire pressure given as 30 psi from the industrial standard. For improving non-linearity of the prior capacitive pressure sensors, it is suggested that touch mode capacitive pressure sensor be applied. In addition, initial capacitance is designed as small as possible for the conformity to the wireless sensor. ANSYS, commercial FEA package, is used for designing and simulating the sensor. The device is progressed by MEMS (Micro Electro Mechanical Systems) fabrication and packaged with PDMS. The result is obtained sensitivity, 1 pF/psi, through a pressure test. The simulation result is discrepant from experiment one. Wafer's uniformity is presumed as the main reason of discrepancy.

Generalized Sidelobe Canceler for TPMS Interference Cancellation (TPMS 간섭제거를 위한 Generalized Sidelobe Canceler)

  • Park, Cheol;Hwang, Suk-Seung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.663-668
    • /
    • 2012
  • A TPMS(Tire Pressure Monitoring System) is a wireless communication system designed to monitor the pressure and temperature of pneumatic tires of a vehicle. In order to provide the aid in protecting a driver, this system reports tire pressure information to the driver of the vehicle. Since the wireless communication technique should be employed to transmit the TPMS data from each tire to signal processing unit in the vehicle, it suffers from interference signals from external electrical or electronics equipments. In this paper, we propose the TPMS interference cancellation technique based on GSC(Generalized Sidelobe Canceler), which does not have only the excellent performance like MVDR(Minimum-Variance-Distortionless-Response) but also has the low computational complexity comparing with MVDR. The performance of interference suppression is conformed by computer simulation examples.

A Study on the Curing Bladder Shaping of Tire by Finite Element Method Using Contact Element (접촉요소를 이용한 유한요소법에 의한 타이어 가류브레더 팽창거동에 관한 연구)

  • Kim, Hang-Woo;Hwang, Gab-Woon;Cho, Kyu-Zong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.378-384
    • /
    • 1997
  • In curing process of tire, contact and slip occurs between green tire and curing bladder. The curing process is a critical step in the manufacture of tires. In this investigation, curing bladder shaping is examined using a finite element method. Specifically, a finite element model between the inner part of green tire and the outer part of curing bladder is generated using contact element and curing bladder is generated using incompressible element. Numerical analysis are performed on two different bladder types, different overall outer diameters of curing bladder and different heights of curing bladder. Numerical results show that contact pressure is increased by using toroidal type of curing bladder, increasing overall diameter and increasing height of curing bladder. To obtain natural equilibrium carcass line, there is a requirement in increasing contact pressure of the section between side and bead.

IRI estimation using analysis of dynamic tire pressure and axle acceleration

  • Zhao, Yubo;McDaniel, J. Gregory;Wang, Ming L.
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.151-161
    • /
    • 2017
  • A new method is developed to estimate road profile in order to estimate IRI based on the ASTM standard. This method utilizes an accelerometer and a Dynamic Tire Pressure Sensor (DTPS) to estimate road roughness. The accelerometer measures the vertical axle acceleration. The DTPS, which is mounted on the tire's valve stem, measures dynamic pressure inside the tire while driving. Calibrated transfer functions are used to estimate road profile using the signals from the two sensors. A field test was conducted on roads with different quality conditions in the city of Brockton, MA. The IRI values estimated with this new method match the actual road conditions measured with Pavement Condition Index (PCI) based on the ASTM standard, images taken from an onboard camera and passengers' perceptions. IRI has negative correlation with PCI in general since they have overlapping features. Compared to the current method of IRI measurement, the advantage of this method is that a) the cost is reduced; b) more space is saved; c) more time is saved; and d) mounting the two sensors are universally compatible to most cars and vans. Therefore, this method has the potential to provide continuous and global monitoring the health of roadways.

An Experimental Study on the Characteristics of Air Flow Velocity Distritutions Inside a Rolling Tire -Unloaded Rolling Tire- (회전하는 타이어 내부공기의 유동특성에 관한 실험적 연구 -무부하 회전구동 타이어-)

  • 김윤제;조정현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.174-181
    • /
    • 1999
  • in order to elucidate the characteristic of velocity distribution of the cavity air. Exploratory tests were conducted on an unloaded rolling radial tire operated at various speeds and inflation pressure. A hot-wire anemometer, rotating with the tire, was used to measure the flow velocity inside the tire cavity. Tow different types of experiments were performed ; one for the effects of rolling speed with constant inflation pressure, the other for the various cavity pressures with constant rolling speed. Experimental results are given as plots of the mean velocity distributions versus the distance from the rim. It is observed that the magnitude of mean velocity in the cavity air shows increasing natures with the increasing of the inflation pressures and rolling speeds.

  • PDF

3-D Finite Element Mesh Generation of Tires Considering Detailed Tread Pattern (상세 트레드 패턴을 반영한 3차원 타이어 유한요소 격자 생성)

  • Cho, Jin-Rae;Kim, Ki-Whan;Hong, Sang-Il;Kim, Nam-Jeon;Kim, Kee-Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1615-1622
    • /
    • 2003
  • Being contacted directly with. ground, the tire tread part is in shape of complex patterns of variable ASDs(anti-skid depth) to satisfy various tire performances. However, owing to the painstaking mesh generation job and the extremely long CPU-time, conventional 3-D tire analyses have been performed by either neglecting tread pattern or modeling circumferential grooves only. As a result, such simplified analysis models lead to considerably poor numerical expectations. This paper addresses the development of a 3-D tire mesh generation considering the detailed tread pattern and shows that the contact pressure and frictional energy distribution of tires considering the detailed pattern become better than those by the simplified tire model.

Effect of Slip on Tractive Performance of Driving Wheel (구동륜 슬립이 견인성능에 미치는 영향)

  • 박원엽
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.234-243
    • /
    • 2002
  • When a vehicle is operated over sort terrain, torque(or soil thrust) applied to driving wheel brings about shear displacement far soil due to compression and shear failure of soil under tire. This shear displacement give rise to slip and a additional sinkage due to slip. This additional sinkage is usually referred to as slip-sinkage. The slip-sinkage is affected by soil conditions and inflation pressure of tire. This slip-sinkage influence tractive performance on driving wheel . We conducted the experimental study far investigating the effect of slip on sinkage and tractive performance of driving wheel, such as motion resistance, thrust and drawbar pull. The experiment was carried out over three different soil conditions(soft, hard and very hard soil) far a tire with three levels of inflation pressure(120kPa, 240kPa and 360kPa). The results of this study show qualitatively slipsinkage characteristics and slip-tractive performance relationships of driving wheel with soil conditions and inflation pressure of tire.