• Title/Summary/Keyword: Tip-speed ratio

Search Result 152, Processing Time 0.024 seconds

PERFORMANCE ANALYSIS OF NREL PHASE VI WIND TURBINES UNDER VARIOUS SCALE CONDITIONS (스케일 변화에 따른 NREL PHASE VI 풍력터빈의 성능해석)

  • Park, Y.M.;Chang, B.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.155-158
    • /
    • 2006
  • In the present paper, the scale effects of two-dimensional airfoil and three-dimensional wind turbine were investigated by using FLUENT software. For two dimensional analysis, flow around S809 airfoil with various Reynolds No. and Mach No. conditions were simulated. For three dimensional analysis, scaled NREL Phase VI wind turbine models from 6% to 1,600% were simulated under the same tip speed ratio condition. Finally, aerodynamic comparisons between two-dimensional flow and three dimensional wind turbine flow are made for the feasibility study of scale effect corrections. Currently, KARI(Korea Aerospace Research Institute) is preparing for the wind tunnel test of 12% NREL Phase VI wind turbine and the performance analysis of the scaled NREL wind turbine model will be validated by the wind tunnel test.

  • PDF

A Study on the Performance of Tidal Turbine by Inflow condition (유입유동에 따른 조류터빈의 성능의 변화)

  • Kim, B.G.;Yang, C.J.;Choi, M.S.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.154-154
    • /
    • 2012
  • Many suggestions is offered to resolve global warming. Tidal current generation is producing power by switched tidal difference sea water horizontal fluid flow produced by tidal difference using rotor and generator. So, change the angle of inflow condition due to the entrance of efficiency are considered. We therefore investigated three dimensional flow analysis and performance evaluation using commercial ANSYS-CFX code for horizontal axis turbine. Then We also studied three dimensional flow characteristics of a rotating rotor and blade surface streamlines around a rotor. As a result, Cp was highest at TSR 5.5, especially the larger changes in the angle of inflow condition decreased efficiency.

  • PDF

A Study on the Parallel Operation Strategy of Small Wind Turbine System for Battery Charging (배터리 충전을 위한 소형풍력 발전 시스템의 병렬 운전방안에 관한 연구)

  • Son, Yung-Deug;Ku, Hyun-Keun;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.549-556
    • /
    • 2014
  • This study proposes a parallel operation strategy for small wind turbine systems. A small wind turbine system consists of blade, permanent magnet synchronous generator, three-phase diode rectifier, DC/DC buck converter, and the battery load. This configuration has reliability, simple control algorithm, high efficiency, and low cost. In spite of these advantages, the system stops when unexpected failures occur. Possible failures can be divided into mechanical and electrical parts. The proposed strategy focuses on the failure of electrical parts, which is verified by numerical analysis through equivalent circuit and acquired general formula of small wind power generation systems. Simulation and experimental results prove its efficiency and usefulness.

Numerical analysis on the flow noise characteristics of 300W Savonius-type vertical-axis wind turbines (300W급 Savonius 형 수직축 풍력발전기의 유동소음특성에 관한 수치적 연구)

  • Kim, Sanghyoen;Lee, Gwangse;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.725-730
    • /
    • 2012
  • In this paper, flow noise characteristics of Savonius-type vertical-axis wind turbines are numerically investigated using hybrid CAA techniques. High frequency harmonics as well as BPF components are identified in the predicted noise spectra from a Savonius wind turbine. As the BPF components belong to infrasound, the higher harmonic components affects human response dominantly. Further analysis is performed to investigate the reason causing the higher frequency harmonic noise by changing operational conditions of a Savonius wind turbine. Based on this result, it is revealed that the frequency of higher harmonic components is determined by the radius of blades and angular velocity of Savonius wind turbine.

  • PDF

Performance Improvement of High Speed Jet Fan

  • Choi, Young-Seok;Kim, Joon-Hyung;Lee, Kyoung-Yong;Yang, Sang-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.39-49
    • /
    • 2010
  • In this paper, a numerical study has been carried out to investigate the influence of jet fan design variables on the performance of a jet fan. In order to achieve an optimum jet fan design and to explain the interactions between the different geometric configurations in the jet fan, three-dimensional computational fluid dynamics and the DOE method have been applied. Several geometric variables, i.e., hub-tip ratio, meridional shape, rotor stagger angle, number of rotor-stator blades and stator geometry, were employed to improve the performance of the jet fan. The objective functions are defined as the exit velocity and total efficiency at the operating condition. Based on the results of computational analyses, the performance of the jet fan was significantly improved. The performance degradations when the jet fan is operated in the reverse direction are also discussed.

Study of Flow Field and Pressure Distribution on a Rotor Blade of HAWT in Yawed Flow Conditions

  • Maeda, Takao;Kamada, Yasunari;Okada, Naohiro;Suzuki, Jun
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.360-368
    • /
    • 2010
  • This paper describes the flow field and the blade pressure distribution of a horizontal axis wind turbine in various yawed flow conditions. These measurements were carried out with 2.4m-diameter rotor with pressure sensors and a 2-dimensional laser Doppler velocimeter for each azimuth angle in a wind tunnel. The results show that aerodynamic forces of the blade based on the pressure measurements change according to the local angle of attack during rotation. Therefore the wake of the yawed rotor becomes asymmetric for the rotor axis. Furthermore, the relations between aerodynamic forces and azimuth angles change according to tip speed ratio. By the experimental analysis, the flow field and the aerodynamic forces for each azimuth angle in yawed flow condition were clarified.

EDISON CFD를 이용한 100 kW 수평축 조류발전 터빈 주위 유동 해석

  • O, Seung-Jin;Nam, Gwon-U
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.15-18
    • /
    • 2016
  • 본 연구는 조류발전 터빈의 블레이드 형상 최적화 해석 시스템 개발에 대한 사전연구의 일환으로 EDISON CFD의 프로펠러 단독성능 S/W와 SNUFOAM ShipMesh Advanced 자동격자생성기를 이용하여 조류발전 터빈 주위 유동장에 대한 수치해석을 수행하였다. TSR 조건 변화에 따라 수치해석을 수행하고 이에 대한 power, total coefficient를 동일한 조건에서 수행된 실험결과와 비교 검증하여 해석자의 신뢰도를 확인하였다. 또한, 블레이드 전체를 모델링한 full body 해석과 하나의 블레이드만을 모델링한 single body 해석 결과를 비교하여 경제적이면서 정도 높은 터빈 성능해석 프로세스를 제안하였다. 조류발전 터빈의 TSR 조건 변화에 따라 낮은 TSR 조건에서는 국부적 와동발생에 의해 $C_P$가 감소하는 것을 확인하였고 설계 TSR에서 가장 좋은 효율을 보임을 확인하였다. 이를 통해 suction side의 압력 분포, 팁 와동의 강도 등 성능개선을 위한 주요한 설계변수를 식별하였다.

  • PDF

Performance Prediction of the Horizontal Axis wind Turbine in Arbitrary Wind Direction (임의 풍향에 있는 수평축 풍력터빈의 성능예측)

  • Yu, Neung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.255-265
    • /
    • 1996
  • Up to the present the study on the performance prediction of HAWT was performed mainly by assuming the axial flow. So in this paper we aimed at the fully non-axial flow of HAWT. For this purpose, we defined the wind turbine pitch angle in addition to the yaw angle to specify the arbitrary wind direction. And we adopted the Glauert method as the basic analysis method then modified this method suitably for our goal. By comparing the computational results obtained by this modified new Glauert method with the experimental results, it was proved that our method was a very efficient method. And on the basis of the reliability of this method we considered the effect of all the design parameters and presented the optimum blade geometry and the optimum operating condition to gain the best performance curve.

Analytical Surge Behaviors in Systems of a Single-stage Axial Flow Compressor and Flow-paths

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2016
  • Behaviors of surges appearing near the stall stagnation boundaries in various fashions in systems of a single-stage compressor and flow-path systems were studied analytically and were tried to put to order. Deep surges, which enclose the stall point in the pressure-mass flow plane, tend to have either near-resonant surge frequencies or subharmonic ones. The subharmonic surge is a multiple-loop one containing, for example, in a (1/2) subharmonic one, a deep surge loop and a mild surge loop, the latter of which does not enclose the stall point, staying only within the stalled zone. Both loops have nearly equal time periods, respectively, resulting in a (1/2) subharmonic surge frequency as a whole. The subharmonic surges are found to appear in a narrow zone neighboring the stall stagnation boundary. In other words, they tend to appear in the final stage of the stall stagnation process. It should be emphasized further that the stall stagnation initiates fundamentally at the situation where a volume-modified reduced resonant-surge frequency becomes coincident with that for the stagnation boundary conditions, where the reduced frequency is defined by the acoustical resonance frequency in the flow-path system, the delivery flow-path length and the compressor tip speed, modified by the sectional area ratio and the effect of the stalling pressure ratio. The real surge frequency turns from the resonant frequency to either near-resonant one or subharmonic one, and finally to stagnation condition, for the large-amplitude conditions, caused by the non-linear self-excitation mechanism of the surge.

An Experimental Study on Spray Characteristics of Diesel and Bio-diesel Fuel (디젤 및 바이오디젤 연료의 분무특성에 관한 연구)

  • Kim, Jae-Duk;Ainull, Ghurri;Song, Kyu-Keun;Jung, Jae-Yeon;Kim, Hyung-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.53-59
    • /
    • 2011
  • The using of diesel engine will be increased in the world for fuel economy. But diesel engine emits harmful emissions such as much NOx, smoke etc. In this study, experiments were performed to investigate the spray characteristics of diesel spray in a common-rail system according to fuel temperature, injection pressure, injection period and fuel viscosity etc. using a high speed video camera. Diesel oil has different spray patten due to injection pressure and injection period in a common-rail system. A Filter pressure was influenced by fuel temperature which was turned to fuel viscosity related to a fluid flowing. The effect of the bio-diesel fuel mixing ratio on the spray and atomization characteristics was also investigated at various experimental conditions. It shows that the droplet atomization characteristics of bio-diesel fuel showed deteriorated results as the mixing ratio of biodiesel increased because of the high viscosity.