• Title/Summary/Keyword: Tip design

Search Result 747, Processing Time 0.024 seconds

Development of Hydrodynamic Capacity Evaluation Method for a Vertical-Axis Tidal Stream Turbine (수직축 조류발전 터빈의 유체공학적 용량 산정기법 개발)

  • Lee, D.H;Hyun, B.S.;Lee, J.K.;Kim, M.C.;Rhee, S.H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.2
    • /
    • pp.142-149
    • /
    • 2012
  • This study deals with the investigation of the scale effect for the vertical-axis tidal stream turbine by evaluating the hydrodynamic efficiency of turbine rotors of different diameters at different flow conditions. Numerical analyses are made for the turbine rotors with a same shape, but different sizes obtained using the diameter evaluation equation suggested in this paper. It is shown that the performance of turbine is clearly dependent upon the rotor size and inflow velocity, i.e. Reynolds number dependency of different-scaled turbines showing better efficiency with increasing Reynolds number. The sudden decrease of efficiency is also noticed around the transition region of Reynolds number. The hydrodynamic capacity evaluation method needed at initial stage of turbine design is suggested and exercised with some test cases. It is recommended that the method is expected to be useful for turbines with demanding powers between 10 kW and 300 kW.

Parametric Numerical Study on the Performance of Helical Tidal Stream Turbines (헬리컬 터빈의 설계인자에 따른 성능 연구)

  • Han, Jun-Sun;Choi, Da-Hye;Hyun, Beom-Soo;Kim, Moon-Chan;Rhee, Shin-Hyung;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.114-120
    • /
    • 2011
  • The characteristics of a helical turbine to be used for tidal stream energy conversion have been numerically studied with varying a few design parameters. The helical turbines were proposed aiming at mitgating the well known poor cut-in characteristics and the structural vibration caused by the fluctuating torque, and the basic concept is introducing some twisting angle of the vertical blade along the rotation axis of the turbine. Among many potential controling parameters, we focused, in this paper, on the twisting angle and the height to diameter ratio of the turbine, and, based on the numerical experiment, We tried to propose a configuration of such turbine for which better performance can be expected. The three-dimensional unsteady RANS equations were solved by using the commercial CFD software, FLUENT with k-${\omega}$ SST turbulence model, and the grid was generated by GAMBIT. It is shown that there are a range of the twisting angle producing better efficiency with less vibration and the minimum height to diameter ratio above which the efficiency does not improve considerably.

Revival Manufacturing Technique and Bonding Method for Jingdezhen White Porcelain with Metal Bound Rim (경덕진요 백자 구연부 금속 테두리의 제작기법 및 접착방법 재현)

  • Yang, Pil-Seung;Seo, Jeong-Ho;Hwang, Hyun-Sung
    • Journal of Conservation Science
    • /
    • v.25 no.3
    • /
    • pp.273-282
    • /
    • 2009
  • As a result of investigating research papers concerning the metal bound rim decoration on four pieces of 'Bowl, white porcelain with impressed floral design and sliver bound rim' and one piece of 'Bowl, white porcelain with sliver bound rim' from among the Jingdezhen white porcelain, which are Sinan remains that are kept in a National museum of Korea. It was found that the material of the bound rim was not silver but tin, and lacquer was used as glue. Based on such a scientific analysis, this study conducted a reproduction test of the manufacturing technique and the bonding method of the metal bound rim attached to the upper tip of the china ware. As a way of reproducing the bound rim, the study was able to discover the best method in terms of the avoidance of loss of materials and the workability out of various cutting methods for tin plates, and it also discovered that the use of lacquer in mixture with soil showed a better workability than the use only of a lacquer ingredient in a test of the bonding method of a metal bound rim using lacquer. Also, in the test of a drying method, a bonding method after drying within a short time at a relatively high temperature was found to be more effective than the drying method after humidifying at a normal temperature, which is used in traditional lacquer ware preservation treatment.

  • PDF

Geometry Design of a Pitch Controlling Type Horizontal Axis Turbine and Comparison of Power Coefficients (피치각 제어형 수평축 조류 터빈의 형상설계 및 출력계수 비교)

  • Park, Hoon Cheol;Truong, Quang-Tri;Phan, Le-Quang;Ko, Jin Hwan;Lee, Kwang-Soo;Le, Tuyen Quang;Kang, Taesam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.167-173
    • /
    • 2014
  • In this work, based on the blade element-momentum theory (BEMT), we proposed the geometry of a lab-scale horizontal axis tidal turbine with a diameter of 80cm, which can demonstrate the maximum power coefficient, and investigated the effect of blade pitch angle increase on the power coefficient. For validation of the computed power coefficients by the BEMT, we also computed the power coefficient using the computational fluid dynamics (CFD) for each case. For the CFD, 15 times of the turbine radius was used for the length and diameter of the computational domain, and the open boundary condition was prescribed at the boundary of the computational domain. The maximum power coefficients of the turbine acquired by the BEMT and CFD were about 48%, showing a good agreement. Both of the power coefficients computed by the BEMT and CFD tended to decrease when the blade pitch angle increases. The two power coefficients for a given tip-speed ratio were in good agreement. Through the present study, we have confirmed that we can trust the proposed geometry and the computed power coefficients based on the BEMT.

The Effect of Stress on SCC of Heat Exchanger Tube for LNG Vessel (LNG선박용 열교환기 세관의 SCC에 미치는 응력의 영향)

  • Jeong Hae Kyoo;Lim Uh Joh
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.2 s.19
    • /
    • pp.22-32
    • /
    • 2003
  • Al-brass material is generally used at the state of plastic deformation, for example; bending, extension of bell mouth at shell and tube type heat exchanger. And SCC(stress corrosion cracking) of Al-brass material will be affected by residual stress as plastic deformation. SCC results from synergism between mechanical factor and corrosion environment. Mechanical factor is stress that directly relates with stress intensity factor at the crack tip. This paper was studied on the effect of stress on SCC of Al-brass tube under in $3.5\%$ NaCl. + $0.1\%\;NH_4OH$ solution by constant displacement tester. Increasing of acidified water flow into sea and speeds up corrosion rate of Al-brass which is used as a tube material of vessel heat exchanger by polluted coast seawater. The experimental results are as follow The latent time of SCC occurrence gets longer as the initial stress intensity factor($K_{Ii}$) gets lower The main crack was propagated as the initial stress intensity factor($K_{Ii}$) gets higher, and secondary cracks occurred by electro-chemical factor a(ter stage of released stress. Dezincification phase showed around the crack, and the range of dezincification gets wider as the initial stress intensity factor($K_{Ii}$) gets higher.

  • PDF

Deduction of Correlations between Shear Wave Velocity and Geotechnical In-situ Penetration Test Data (전단파속도와 지반공학적 현장 관입시험 자료의 상관관계 도출)

  • Sun, Chang-Guk;Kim, Hong-Jong;Chung, Choong-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.1-10
    • /
    • 2008
  • Shear wave velocity($V_S$), which can be obtained using various seismic tests, has been emphasized as representative geotechnical dynamic characteristic mainly for seismic design and seismic performance evaluation in the engineering field. For the application of conventional geotechnical site investigation techniques to geotechnical earthquake engineering, standard penetration tests(SPT) and piezocone penetration tests(CPTu) together with a variety of borehole seismic tests were performed at many sites in Korea. Through statistical modeling of the in-situ testing data, in this study, the correlations between $V_S$ and geotechnical in-situ penetrating data such as blow counts(N value) from SPT and piezocone penetrating data such as tip resistance ($q_t$), sleevefriction($f_s$), and pore pressure ratio($B_q$) were deduced and were suggested as an empirical method to determine $V_S$. Despite the incompatible strain levels of the conventional geotechnical penetration tests and the borehole seismic tests, it is shown that the suggested correlations in this study are applicable to the preliminary estimation of $V_S$ for Korean soil layers.

3-D Numerical Analysis for the Verification of Bearing Mechanism and Bearing Capacity Enhancement Effect on the Base Expansion Micropile (선단 확장형 마이크로파일의 3차원 수치해석을 통한 지지 메커니즘 및 지지력 증대효과 검증)

  • Lee, Seokhyung;Han, Jin-Tae;Jin, Hyun-Sik;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.2
    • /
    • pp.19-31
    • /
    • 2021
  • Micropiles are cast-in-place piles with small diameters. The advantage of micropile is low construction expense and simple procedures, so it is widely applied to existing buildings and structures for the reinforcement of foundation and seismic performances. The base expansion structure has been developed following the original mechanism of horizontal expansion steps under compressive loading. This kind of structure can be installed at the pile end to improve the bearing capacity by tip area enlargement and horizontal force increment to the pile surface area. However, 'Micropile with base expansion structure' cannot be put into practical use, because detailed verification for the developed technique has not been conducted so far. In this research, 3-D numerical analysis was conducted to figure out the bearing mechanism of base expansion micropile and to verify the bearing capacity improvement compared to the general micropiles. 3-D modelling of micropile with base expansion structure was carried out and input parameter was determined. Bearing mechanism induced by base expansion structure was analyzed by lab-scale modelling, and bearing capacity improvement was verified by field-scale analysis.

Evaluation of Bearing Capacity Enhancement Effect of Base Expansion Micropile Based on a Field Load Test (현장재하시험을 통한 선단확장형 마이크로파일의 지지력 증대효과 분석)

  • Kim, Seok-Jung;Lee, Seokhyung;Han, Jin-Tae ;Hwang, Gyu-Cheol;Lee, Jeong-Seob ;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.31-44
    • /
    • 2023
  • A base expansion micropile was developed to improve the bearing capacity of the micropile, which bears a simple device installed at the pile base. Under an axial load, this base expansion structure radially expands at the pile tip and attaches itself around ground, compressing the boring wall in the construction stage. In this study, conventional and base expansion micropiles were constructed in the weathered rock where micropiles are commonly installed. Further, field load tests were conducted to verify the bearing capacity enhancement effect. From the load test results, it was revealed that the shaft resistance of base expansion micropiles was about 12% higher than that of conventional micropiles. The load transfer analysis results also showed that compared to conventional micropiles, the unit skin friction and unit end bearing of base expansion micropiles were 15.4% and 315.1% higher, respectively, in the bearing zone of the micropile.

Blade Type Field Vs Probe for Evaluation of Soft Soils (연약지반 평가를 위한 블레이드 타입 현장 전단파 속도 프로브)

  • Yoon, Hyung-Koo;Lee, Chang-Ho;Eom, Yong-Hun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.33-42
    • /
    • 2007
  • The assessment of shear wave velocity($V_s$) in soft soils is extremely difficult due to the soil disturbances during sampling and field access. After a ring type field $V_s$ probe(FVP) has been developed, it has been applied at the southern coastal area of the Korean peninsular. This study presents the upgraded FVP "blade type FVP", which minimizes soil disturbance during penetration. Design concerns of the blade type FVP include the tip shape, soil disturbance, transducers, protection of the cables, and the electromagnetic coupling between transducers and cables. The cross-talking between cables is removed by grouping and extra grounding of the cables. The shear wave velocity of the FVP is simply calculated by using the travel distance and the first arrival time. The large calibration chamber tests are carried out to investigate the disturbance effect due to the penetration of FVP blade and the validity of the shear waves measured by the FVP. The blade type FVP is tested in soils up to 30m in depth. The shear wave velocity is measured every 10cm. This study suggests that the upgraded blade type FVP may be an effective device for measuring the shear wave velocity with minimized soil disturbance in the field.

A Study on Optimized Artificial Neural Network Model for the Prediction of Bearing Capacity of Driven Piles (항타말뚝의 지지력 예측을 위한 최적의 인공신경망모델에 관한 연구)

  • Park Hyun-Il;Seok Jeong-Woo;Hwang Dae-Jin;Cho Chun-Whan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.15-26
    • /
    • 2006
  • Although numerous investigations have been performed over the years to predict the behavior and bearing capacity of piles, the mechanisms are not yet entirely understood. The prediction of bearing capacity is a difficult task, because large numbers of factors affect the capacity and also have complex relationship one another. Therefore, it is extremely difficult to search the essential factors among many factors, which are related with ground condition, pile type, driving condition and others, and then appropriately consider complicated relationship among the searched factors. The present paper describes the application of Artificial Neural Network (ANN) in predicting the capacity including its components at the tip and along the shaft from dynamic load test of the driven piles. Firstly, the effect of each factor on the value of bearing capacity is investigated on the basis of sensitivity analysis using ANN modeling. Secondly, the authors use the design methodology composed of ANN and genetic algorithm (GA) to find optimal neural network model to predict the bearing capacity. The authors allow this methodology to find the appropriate combination of input parameters, the number of hidden units and the transfer structure among the input, the hidden and the out layers. The results of this study indicate that the neural network model serves as a reliable and simple predictive tool for the bearing capacity of driven piles.