• 제목/요약/키워드: Tip Resistance

검색결과 293건 처리시간 0.027초

깊이에 따른 소금의 고결화 강성특성 (Stiffness Characteristics of Salt Cementation according to Depth)

  • 엄용훈;변용훈;쭝꽝훙;이종섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.472-481
    • /
    • 2009
  • Cementation phenomenon has a huge influence on geotechnical stiffness and strength under low confining pressure. The goal of this study is to evaluate the characteristics of stiffness according to the depth. The piezo disk elements are installed at each layer of the cell for the detection of the compressional waves. The change of compressional wave velocity is classified by three stages. The compressional wave velocities are shown different according to the depth. The compressional wave velocity is especially influenced by cementation, effective stress, and coordinate number. Furthermore, the electrical conductivity and cone tip resistance are measured according to the depth. The electrical conductivity and the cone tip resistance show the similar trend with the compressional wave velocity. This study shows that the cementation by salt is affected by the depth on the granular materials.

  • PDF

콘시험결과를 활용한 토질분류법의 고찰 (Investigations of Soil Classification Methods using Cone Test Results)

  • 김대규
    • 한국산학기술학회논문지
    • /
    • 제10권7호
    • /
    • pp.1668-1672
    • /
    • 2009
  • 본 연구에서는 피조콘관입시험 결과를 활용한 토질분류법 중 가장 일반적으로 사용되고 있는 Robertson 방법과 최근 발표된 최신 분류법인 Schneider 방법을 비교분석하였다. 이를 위하여 경기해안 지역의 연약지반을 대상으로 두 방법 및 통일분류법의 토질분류 결과를 고찰하였다. 연구결과, 두 방법에 의한 결과 차이는 크지 않았으나 전반적으로 Schneider 방법이 점토지역에서, Robertson 방법이 사질토에서 보다 정밀한 결과를 보였다. 보다 신뢰도 높은 토질분류를 위하여 콘 시험의 데이터베이스, 정규화된 콘저항치, 간극수압 및 배수조건에 대한 심층 연구가 필요하다.

쐐기형 쏘일 네일의 인발 거동 특성 (Pullout Resistance Characteristics of the Wedge-shaped Soil Nail)

  • 김범주;이용준;윤용수;정민규;윤지남
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1079-1083
    • /
    • 2009
  • In this study, the pullout resistance characteristic of a wedge-shaped soil nail, made by attaching small steel sticks to the tip of a nail in a wedge shape, was investigated. It was developed to improve the overall pullout resistance capacity of the existing soil nail system, composed of nail and grout, by making the wedge provide additional pullout resistance. In order to evaluate the pullout resistance of the wedge shape-soil nail, field pullout tests were conducted, and the results were compared with those for the existing soil nail without the wedge. The field test results showed that the pullout resistance capacity of the wedge-shaped soil nail was 50% larger than that of the existing soil nail without the wedge.

  • PDF

원위치 관입실험기를 활용한 철도 노반 평가 (Railbed Evaluation by using In-situ Penetration Test)

  • 김주한;박정희;윤형구;고태훈;이종섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.261-267
    • /
    • 2011
  • The test fit has commonly used for the evaluation of the railbed condition, and indirect methods by using the compressional wave are also studied. the direct evaluation method by penetration test has not been studied. For the measurement of in-situ cone tip resistance of the railbed with minimizing the disturbance of the upper railbed. the cone penetrometer with the helical type outer rod(CPH) was developed. The outer rod, which has helical screw, is penetrated through the gravel layer and provides the reaction force for cone penetration testing. the cone tip resistances are measured by the mini cone penetrometer, where diameter is 15mm. For the developing the mini cone, strain gauge installation, circuit configuration, penetration rates and calibration process are considered. For the easy penetration of the screw rod in the field, the reaction force stepping plate and guide column are arranged. The screw rod are penetrated through the gravel layer. And the mini cone was pushed into the subgrade railbed at the penetration rate of 1mm/sec. The penetration test shows that the cone tip resistance increases along the depth. In addition, the subgrade condition is evaluated. This study demonstrates that the CPH may be effectively used for the evaluation of subgrade method any damage of the gravel layer.

  • PDF

DIC를 이용한 입자강화 복합재료의 파괴거동 평가 (Evaluation of Fracture Behavior on Particle Reinforced Composite Using Digital Image Correlation)

  • 홍상현;이정원;김재훈;이상연;박재범;정규동
    • 한국항공우주학회지
    • /
    • 제46권7호
    • /
    • pp.535-541
    • /
    • 2018
  • 본 연구에서는 입자강화 복합재료의 파괴거동을 평가하기 위해 쐐기분열시험을 수행하였다. 균열 저항성을 분석하기 위해 균열선단열림변위(CTOD)와 균열선단열림각도(CTOA)를 이용하였다. 사용된 입자강화 복합재료는 특성상 온도와 하중속도에 영향을 많이 받기 때문에 다양한 온도($-60^{\circ}C{\sim}50^{\circ}C$)와 하중속도(5~500mm/min)조건에서 시험을 수행하였다. 또한 균열선단에 대한 변형률장을 분석하기 위해 디지털 이미지 상관법(DIC)을 이용하였다. 시험결과 파괴에너지는 온도가 감소할수록 증가하였으며, 하중속도가 증가할수록 균열저항성이 증가하였다.

쐐기수평력을 도입한 무그라우팅 선단압축 마이크로파일의 지지력 특성에 관한 연구 (A Study on the Bearing Characteristics of No-grouted and End-compressed Micropile Adopting Wedge Horizontal Force)

  • 황규철;안우종;이정섭;하익수
    • 한국지반공학회논문집
    • /
    • 제34권3호
    • /
    • pp.67-75
    • /
    • 2018
  • 본 연구에서는 상부하중 재하 시 마이크로파일 선단부가 팽창하면서 확대되어 단부 주변 지반을 압축하고, 이에 따라 주면마찰력이 발휘되어 그라우팅 이전 단계에서도 지지력을 확보할 수 있는 고정지압구가 장착된 마이크로파일을 개발하였다. 본 연구의 목적은 개발된 고정지압구형 마이크로파일의 지반강도에 따른 적용성을 확인하고, 기존의 단순 선단확장형 마이크로파일 대비 지지거동 특성을 비교하는 데에 있다. 이를 위하여 선단저항과 주면저항을 분리하여 측정할 수 있는 모형토조를 포함한 새로운 시험장치를 고안하였으며, 고안된 시험장치를 이용한 지반강도 및 파일의 선단단면 변화에 따른 모형 재하시험을 수행하였다. 시험결과, 개발된 마이크로파일은 지반강도가 클수록 쐐기수평력에 의한 단부 주면마찰력이 더 증가하며, 풍화암 강도 이상 지반에서 더 효과적으로 적용될 수 있는 것으로 확인되었다. 그리고 풍화암 강도 이하의 지반강도 지반에서도 쐐기수평력 발휘에 따른 단부 확경으로 인해 추가적인 지지력 확보 효과가 나타날 수 있음을 확인하였다.

수치해석 결과 분석을 통한 다양한 말뚝 선단하부의 지반조건에 따른 대구경현장타설말뚝의 지지력 거동에 관한 연구 (A Study on the Bearing Capacitiy behavior of Large-diameter Drilled Shafts According to Various Ground Conditions under Pile Tip through Numerical Analysis Results)

  • 김채민;윤도균;최용규
    • 한국지반공학회논문집
    • /
    • 제37권11호
    • /
    • pp.7-22
    • /
    • 2021
  • 본 연구에서는 현장타설말뚝에서 실시된 양방향말뚝재하시험 자료에 대하여 역해석을 실시하였다. 그리고 실트질 점토, 실트질 모래, 모래질 실트, 모래질 자갈, 풍화암, 연암의 다양한 선단지반에 지지된 대구경 현장타설 말뚝에 대하여 수치해석을 실시하여 지지력을 분석하였다. 지지력 분석은 P-S 방법, Davisson 방법, 25.4mm 허용침하량을 이용하여 산정하였다. 3가지 방법으로 분석한 최소 허용지지력은 19.64MN ~ 24.96MN으로 나타났다. 이때, 선단지지력은 두부재하하중의 2% ~ 12%를 분담하였으며, 주면마찰력은 두부재하하중의 88% ~ 98%를 분담하였다. 선단 지반의 강도가 클수록 허용지지력이 증가하는 것으로 나타났다. 그러나 최대 허용지지력과 최소 허용지지력의 차이는 5.32MN로 선단 지반종류에 따른 허용지지력의 증가는 27%에 불과하였다.

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2000년도 추계학술발표회 초록집
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF

기성말뚝의 지지력 거동해석과 시공관리방안 (Bearing Capacity and Control Method of Driven Piles)

  • 박영호;김경석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.249-258
    • /
    • 1999
  • Dynamic load and static load tests are performed on steel pipe piles and concrete piles at five construction sites in highway to compare the difference of load bearing mechanisms. At each site, one steel pile is instrumented with electric strain gages and dynamic tests are performed on the pile during installation. Damages of strain gages due to the installation are checked and static test is performed upon the same pile after two or seven days as well. It shows that load transfer from side friction to base resistance behaves somewhat differently according to the results of load-settlement analysis obtained from PDA and static load test. Initial elastic stage of load settlement curves of two load tests is almost similar. But after the yielding point, dynamic resistance of pile behaves more stiffer than static resistance, thus, dynamic load test result might overestimate the real pile capacity compared with static result. Analysis of gage readings shows that unit skin friction increases exponentially with depth. The skin friction is mobilized at the 1∼2m above the pile tip and contributes to the considerable side resistance. Comparison of side and base resistances between the measured value and the calculated value by Meyerhof's bearing capacity equation using SPT N value shows that the calculated base resistance is higher than the measured. Therefore, contribution of side resistance to total capacity shouldn't be ignored or underestimated. Finally, based upon the overall test results, a construction control procedure is suggested.

  • PDF

이종재료(알루미늄합금-강판)의 저항 점용접에 관한 연구 (A Study on Resistance Spot Welding of Dissimilar Sheet Metals(Aluminum Alloy - Steel Sheets))

  • 손병천;우승엽;이재범;최용범;장희석
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.42-62
    • /
    • 1997
  • Resistance spot welding has been widely used in the sheet metal joining processes because of its high productivity and convenience. Recently, automobile industries are trying to replace partly steel sheets with aluminum alloy sheets. Among currently produced aluminum alloys, Al alloy sheets of Al-Mg-Si(6000 series) are being tested. Especially, 6000 series are the most probable substitute in view of strength and weldability. In this paper, an attempt was made to apply resistance spot welding to joining of dissimilar sheet metals (KS6383+SCPZn or KS6383+SHCP). An effort was made to balance heating rate in the Al alloy with that in the steel sheets by increasing electrode tip diameter. Although resistance spot welding of Al alloy sheet and sheet metals does not produce desirable nugget, it proved to have reasonable strength if optimal weld condition is found by tensile-shear strength and fatigue life test. Since spot weld joints in automobile are always experiencing repeated load, spot welding methodology proposed in this paper is found to be not suitable to automobile body manufacturing.

  • PDF