• 제목/요약/키워드: Tip Resistance

검색결과 293건 처리시간 0.024초

Intermittent Atomization Characteristics of Multi-Hole and Single-Hole Diesel Nozzle

  • Lee, Jeekuen;Kang, Shin-Jae;Park, Byungjoon
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1693-1701
    • /
    • 2002
  • The intermittent spray characteristics of a multi-hole and a single-hole diesel nozzle were experimentally investigated. The hole number of the multi-hole nozzle was 5, and the hole diameter of the 5-hole and the single-hole nozzle was the same as d$\_$n/=0.32 ㎜ with the constant hole length to diameter ratio(l$\_$n//d$\_$n/=2.81). The droplet diameters of the spray, including the time-resolved droplet diameter, SMD (Sauter mean diameter) and AMD (arithmetic mean diameter) , injected intermittently from the two nozzles into the still ambient were measured by using a 2-D PDPA (phase Doppler particle analyzer). Through the time-resolved evolutions of the droplet diameter, it was found that the structure of the multi-hole and the single-hole nozzle spray consisted of the three main parts : (a) the leading edge affected by surrounding air. and composed of small droplets; (b) the central part surrounded by the leading edge and mixing flow region and scarcely affected by the resistance of air, (c) the trailing edge formed by the passage of the central part. The SMD decreases gradually with the increase in the radial distance, and the constant value is obtained at the outer region of the radial distance (normalized by hole diameter) of 7-8 and 6 for the 5-hole and single-hole nozzle, respectively. The SMD along the centerline of the spray decrease shapely with the increase in the axial distance after showing the maximum value near the nozzle tip. The SMD remains the constant value near the axial distance(normalized by hole diameter) of 150 and 180 for the 5-hole and the single-hole nozzle, respectively.

Agrobacterium 매개에 의한 고구마 형질전환 및 식물체 재분화 (Agrobacterium- mediated Genetic Transformation and Plant Regeneration of Sweetpotato (Ipomoea batatas))

  • 임순;양경실;권석윤;백기엽;곽상수;이행순
    • Journal of Plant Biotechnology
    • /
    • 제31권4호
    • /
    • pp.267-271
    • /
    • 2004
  • 국내 고구마 율미 품종의 배발생 캘러스를 Agrobacterium 매개 방법을 이용하여 형질전환 식물체를 개발하였다. 배발생 캘러스를 7일 동안 전배양 한 후 Agrobacterium과 2일 간 공동배양할 경우 일시적인 형질전환 효율이 가장 높았다. Agrobacterium과의 공동배양 후 배발생 캘러스를 1mg/L 2,4-D, 100mg/L kanamycin, 400mg/L claforan 이 첨가된 선발배지에서 4주 간격으로 계대배양하였다. 선발된 kanamycin 저항성 캘러스를 2,4-D를 제거한 선발배지로 옮겨 체세포배를 유도하였으며 이후 소식물체로 발달하였다. Southern 분석으로 1-3 copy의 GUS 유전자가 고구마 염색체내로 도입되었음을 확인하였다. 또한 조직학적 분석으로 GUS 유전자가 형질전환 고구마의 배발생 캘러스, 재분화 식물체의 잎, 엽병, 및 뿌리 조직에서 강하게 발현됨을 알 수 있었다.

소형콘관입시험(Miniature CPT)의 국내현장적용 사례분석 (Case Studies on the Field Application of Miniature CPT's in South Korea)

  • 윤성수;황대진;김준오;지완구
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.269-281
    • /
    • 2010
  • The cone penetration test(CPT) has been increasingly used for in situ site characterization. However, the use of CPT is often limited due to specific site conditions depending on the cone size, geometry, and capacity of the CPT system used. In South Korea, it has generally been considered that the CPT could be satisfactorily performed only in soft soils. Louisiana State University/ Louisiana Transportation Research Center has implemented a field-rugged continuous intrusion miniature cone penetration test (CIMCPT) system since the 1990s. The miniature cone penetrometer of the CIMCPT system has a cross-sectional cone area of $2cm^2$ allowing finer soil profiles compared to the standard $10cm^2$. The reduced cross-sectional area also enables a system capacity reduction leading to cost saving and ease in maintenance. In addition, the continuous intrusion mechanism allows fast and economic site investigations. Samsung C&T Corporation has recently implemented a similar CIMCPT system. In this study, case studies on the field application of Samsung CIMCPT system for the last 2 years are presented to illustrate its performance investigation and its usefulness and limitation. Results of the case studies show that the CIMCPT system can be applied to soils with cone tip resistance($q_c$) values up to about 30MPa and allows a reliable and useful way to characterize soft soils. The results also show that the rod buckling limits the investigation depth by the system and the large contact pressure of the CIMCPT truck prevents the use of the system at sites with soft surface soils. According to the results of the case studies, the Samsung CIMCPT system has been being upgraded with a miniature cone with a longer rod, a crawler-type transportation system, a pre-boring system, and so on.

  • PDF

Comparison of Impedance Parameters and Occupational Therapy Evaluation in the Paretic and Non-paretic Upper Extremity of Hemiplegic Stroke Patients

  • Yoo, Chan-Uk;Kim, Jaehyung;Hwang, Youngjun;Kim, Gunho;Shin, Yong-Il;Jeon, Gyerok
    • 한국멀티미디어학회논문지
    • /
    • 제20권12호
    • /
    • pp.1980-1991
    • /
    • 2017
  • Many stroke patients undergoing rehabilitation therapy require a quantitative indicator for the evaluation of body function in paretic and non-paretic regions. In this study, the impedance parameters were acquired to assess the physical status in the upper extremity of thirty six stroke patients with hemiplegia caused by cerebral hemorrhage (10 patients) and cerebral infarction (26 patients), using bioelectrical impedance. Prediction marker (PM), phase angle (PA), PM/PA, and resistance (R) versus reactance ($X_c$) were utilized to evaluate the functional status of the paretic and non-paretic regions. In addition, the hand grip strength (HGS) and the pinch strength (lateral, palmer, tip) were measured on the upper extremity of hemiplegic stroke patients. PM was distributed in inversely proportional to HGS, but PA was distributed in proportional to HGS. However, there were a number of patients with HGS of 0, regardless of the impedance parameters (PM, PA, R vs. $X_c$). Paretic and non-paretic status in upper extremity of these patients could not be analyzed using impedance parameters. At the rehabilitation therapist's instructions, they were unable to move the hand and fingers of the paretic upper extremity by cranial nerve damage, motor nerve damage, and severe cognitive decline.

MECHANICAL AND ADHESIONAL MANIPULATION TECHNIQUE FOR MICRO-ASSEMBLY UNDER SEM

  • Saito, Shigeki;Takahashi, Kunio;Onzawa, Tadao
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.720-725
    • /
    • 2002
  • In recent years, techniques for micro-assembly with high repeatability under a scanning electron microscope (SEM) are required to construct highly functional micro-devices. Adhesion phenomenon is more significant for smaller objects, becanse adhesional force is proportional to size of the objects while gravitational force is proportional to the third power of it. It is also known that adhesional force between micro-objects exposed to Electron Beam irradiation of SEM increases with the elapsed time. Therefore, mechanical manipulation techniques using a needle-shaped tool by adhesional force are often adopted in basic researches where micro-objects are studied. These techniques, however, have not yet achieved the desired repeatability because many of these could not have been supported theoretically. Some techniques even need the process of trial-and-error. Thus, in this paper, mechanical and adhesional micro-manipulation are analyzed theoretically by introducing new physical factors, such as adhesional force and rolling-resistance, into the kinematic system consisting of a sphere, a needle-shaped tool, and a substrate. Through this analysis, they are revealed that how the micro-sphere behavior depends on the given conditions, and that it is possible to cause the fracture of the desired contact interfaces selectively by controlling the force direction in which the tool-tip loads to the sphere. Based on the acquired knowledge, a mode diagram, which indicates the micro-sphere behavior for the given conditions, is designed. By refening to this mode diagram, the practical technique of the pick and place manipulation of a micro-sphere under an SEM by the selective interface fracture is proposed.

  • PDF

피에조 콘과 딜라토메터 시험을 이용한 연약지반의 현장특성 비교 (Comparison of Tn-situ Characteristics of Soft Deposits Using Piezocone and Dilatometer)

  • 김영상;이승래;김동수
    • 한국지반공학회지:지반
    • /
    • 제14권6호
    • /
    • pp.45-56
    • /
    • 1998
  • 대상 연약지반의 적절한 개량기술 선택과 개량 효과들을 평가, 관리하기 위해서는 현장 연약 점토지반 특성을 정확히 평가할 수 있는 적절한 현장 시험기법의 적용이 필수적이다. 본 논문에서는 여러 현장시험 방법 중에 경제적이면서도 효과적인 것으로 알려져 국내에서 그 수요가 증가하고 있는 피에조 콘(piezocone)과 딜라토메터(dilatometer)를 이용하여 연약지반의 현장 물성을 평가하고 비교하였다. 연구결과 두 장비 모두 유사한 흙 분류 결과를 제공하였으나. 특히 간극수압으로부터 도출한 흙 분류 결과가 연약점토층 사이에 실트나 모래층 들이 산재한 우리나라 실정에 보다 적절하며 일관성 있는 결과를 주는 것으로 평가되었다. 점토층의 비배수 전단강도는 피에조 콘의 경우 간극수압과 선단저항력으로부터 도출된 간들이 유사하였고 딜라토메터로부터 추정된 비배수 전단강도는 피에조 콘의 두 관측 값으로 유추된 결과들의 평균간에 근접한 것으로 평가되었다. 그리고 실트 또는 모래층이 산재하는 경우 연약지반의 압밀특성을 평가하기 위해서는 관입과정에서 유발되는 소산효과를 고려한 이론적 시간계수가 보다 적절한 것으로 평가된다.

  • PDF

From Theory to Implementation of a CPT-Based Probabilistic and Fuzzy Soil Classification

  • Tumay, Mehmet T.;Abu-Farsakh, Murad Y.;Zhang, Zhongjie
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1466-1483
    • /
    • 2008
  • This paper discusses the development of an up-to-date computerized CPT (Cone Penetration Test) based soil engineering classification system to provide geotechnical engineers with a handy tool for their daily design activities. Five CPT soil engineering classification systems are incorporated in this effort. They include the probabilistic region estimation and fuzzy classification methods, both developed by Zhang and Tumay, the Schmertmann, the Douglas and Olsen, and the Robertson et al. methods. In the probabilistic region estimation method, a conformal transformation is used to determine the soil classification index, U, from CPT cone tip resistance and friction ratio. A statistical correlation is established between U and the compositional soil type given by the Unified Soil Classification System (USCS). The soil classification index, U, provides a soil profile over depth with the probability of belonging to different soil types, which more realistically and continuously reflects the in-situ soil characterization, which includes the spatial variation of soil types. The CPT fuzzy classification on the other hand emphasizes the certainty of soil behavior. The advantage of combining these two classification methods is realized through implementing them into visual basic software with three other CPT soil classification methods for friendly use by geotechnical engineers. Three sites in Louisiana were selected for this study. For each site, CPT tests and the corresponding soil boring results were correlated. The soil classification results obtained using the probabilistic region estimation and fuzzy classification methods are cross-correlated with conventional soil classification from borings logs and three other established CPT soil classification methods.

  • PDF

지반 응답 해석 Round Robin Test의 입력 지진파 및 물성에 관한 고찰 (Investigation into the Input Earthquake Motions and Properties for Round Robin Test on Ground Response Analysis)

  • 선창국;한진태;최정인;김기석;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.266-292
    • /
    • 2007
  • Round Robin Test (RRT) on ground response analyses was conducted for three sites in Korea based on several site investigation data, which include borehole logs with the N values from standard penetration test (SPT) for all three sites and additionally cone tip resistance profiles for two sites. Three input earthquake motions together with the site investigation data were provided for the RRT. A total of 12 teams participating in this RRT presented the results of ground response analyses using equivalent-linear and/or nonlinear method. Each team determined input geotechnical properties by using empirical relationships and literatures based on own judgment, with the exception of the input motions. Herein, the characteristics of input motions were compared in terms of the frequency and period, and the selection of the depth to bedrock, on which the motions is impinged, was discussed considering geologic conditions in Korea. Furthermore, a variety of geotechnical properties such as shear wave velocity profiles and soil nonlinear curves were investigated with the input properties used in this RRT.

  • PDF

하악구치부 피질골 engagement가 임플란트 하중전달에 미치는 영향에 관한 3차원 유한요소법적 응력분석 (THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE EFFECT OF CORTICAL ENGAGEMENT ON IMPLANT LOAD TRANSFER IN POSTERIOR MANDIBLE)

  • 정창모
    • 대한치과보철학회지
    • /
    • 제37권5호
    • /
    • pp.607-619
    • /
    • 1999
  • Cortical support is an important factor, as the engagement of the fixture in strong compact bone offers an increased load-carrying capacity and initial stability. Because of the poor bone quality in the posterior mandible and other anatomic considerations, it has been suggested that implant fixtures be placed in these locations with apical engagement of the lingual cortical plate for so-called bicortication. The purpose of this investigation was to determine the effect of cortical engagements and in addition polyoxymethylene(POM) intramobile connector(IMC) of IMZ implant on implant load transfer in edentulous posterior segment of mandible, using three-dimensional (3D) finite element analysis models composed of cortical and trabecular bone involving single implant. Variables such as (1) the crestal peri-implant defect, (2) the apical engagement of lingual cortical plate, (3) the occlusal contact position (a vertical load at central fossa or buccal cusp tip), and (4) POM IMC were investigated. Stress patterns were compared and interfacial stresses along the bone-implant interface were monitored specially. Within the scope of this study, the following observations were made. 1) Offset load and angulation of fixture led to increase the local interfacial stresses. 2) Stresses were concentrated toward the cortical bones, but the crestal peri-implant defect increased the interfacial stresses in trabecular bone. 3) For the model with bicortication, it was noticed that the crestal cortical bone provided more resistance to the bending moment and the lingual cortical plate provided more support for the vertical load. But Angulation problem of the fixture from the lingual cortical engagement caused the local interfacial stress concentrations. 4) It was not clear that POM IMC had the effect on stress distribution under the present experimental conditions, especially for the cases of crestal peri-implant defect.

  • PDF

저항용접 시뮬레이션을 이용한 가공전극 적용 용접 특성 평가

  • 이상민;최두열;박영도
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.97-97
    • /
    • 2010
  • 최근 자동차에서 경량화의 방안으로써 높은 강성을 요구하는 고장력강 사용이 증대 되고 있다. 그러나 고장력강은 저항 점용접 시 일반 강에 비해 높은 전류를 요구하며 계면파단 및 expulsion 발생이 용이하기 때문에 가용 전류 구간이 좁은 특성을 가진다. 많은 연구자들이 hold time, tempering 등의 process를 이용하여 고장력강의 저항 점용접성을 개선하고자 하였으나 생산 공정라인에 적용하기는 어려운 실정이다. 본 연구에서는 용접 공정 변수의 변화에 따른 용접성과 전극 형상 변화을 통한 고장력강 점 용접성 향상에 대한 연구를 실시 하였다. 고장력강의 점 용접성 비교하기 위해 표준 전극(S1)과 인위적으로 가공한 전극(M1)을 사용하였으며, 실험에 사용된 판재는 두께 1.4mm의 DP590이며, 그 결과 표준전극(S1) 보다 가공 전극(M1)의 가용 전류 구간이 0.5kA 정도 넓은 것으로 확인 되었다. 두 전극을 사용한 점용접 시험편들의 인장전단강도를 비교 해보면 표준전극(S1)을 적용한 점용접 시 인장전단강도는 KS B 0850 기준에 만족하나 계면 파단이 발생 하였다. 가공 전극(M1)을 적용한 점용접 시 인장전단강도는 규격 기준에 만족하나 버튼 파단이 발생 하였다. 두 전극을 적용한 점용접부 형상 및 용접부 온도 분포에대해 저항점용접 시뮬레이션 프로그램(SORPAS)을 이용하여 실험 결과 값과 비교 분석하였고 파단모드의 변화에 대한 원인 분석을 도출 하였다.

  • PDF