• Title/Summary/Keyword: Tip Leakage

Search Result 172, Processing Time 0.016 seconds

Fabrication and characterization of silicon field emitter array with double gate dielectric (이중 게이트 절연막을 가지는 실리콘 전계방출 어레이 제작 및 특성)

  • 이진호;강성원;송윤호;박종문;조경의;이상윤;유형준
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.2
    • /
    • pp.103-108
    • /
    • 1997
  • Silicon field emitter arrays (FEAs) have been fabricated by a novel method employing a two-step tip etch and a spin-on-glass (SOG) etch-back process using double layered thermal/tetraethylortho-silicate (TEOS) oxides as a gate dielectric. A partial etching was performed by coating a low viscous photo resist and $O_2$ plasma ashing on order to form the double layered gate dielectric. A small gate aperture with low gate leakage current was obtained by the novel process. The hight and the end radius of the fabricated emitter was about 1.1 $\mu\textrm{m}$ and less than 100$\AA$, respectively. The anode emission current from a 256 tips array was turned-on at a gate voltage of 40 V. Also, the gate current was less than 0.1% of the anode current.

  • PDF

Amended Soil with Biopolymer Positively Affects the Growth of Camelina sativa L. Under Drought Stress (가뭄 조건 하에서 바이오폴리머 혼합 토양이 Camelina sativa L.의 생장에 미치는 긍정적 영향)

  • Lim, Hyun-Gyu;Kim, Hyun-Sung;Lee, Hyeon-Sook;Sin, Jung-Ho;Kim, Eun-Suk;Woo, Hyo-Seop;Ahn, Sung-Ju
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.163-173
    • /
    • 2018
  • The biopolymer (BP) used in this study is mainly composed of xanthan gum and ${\beta}$-glucan derived from microorganism and has been introduced as a novel material for soil stabilization. However, the broad applicability of BP has been suggested in the field of geotechnical engineering while little information is available about the effects of BP on the vegetation. The goal of this study is to find the BP effects on the growth of Camelina sativa L. (Camelina) under drought condition. For more thorough evaluation of BP effects on the plant growth, we examined not only morphological but also physiological traits and gene expression patterns. After 25 days of drought treatment from germination in the soil amended with 0, 0.25, 0.5, and 1% BP, we observed that the BP concentration was strongly correlated the growth of Camelina. When plants were grown under drought stress, Camelina in 0.5% BP mixture showed better physiological parameters of the leaf stomatal conductance, electrolyte leakage and relative water content compared to those in control soil without BP. Plant recovery rate after re-watering was higher and the development of lateral root was lower in BP amended soil. RNA expression of Camelina leaf treated with/without drought for 7 and 10 days showed that aquaporin genes transporting solutes at bio-membrane, CsPIP1;4, 2;1, 2;6 and TIP1;2, 2;1, were induced more in the plants with BP amendment and drought treatment. These results suggest that the soil amended with BP has a positive effect on the transport of nutrients and waters into Camelina by improving water retention in soil under drought condition.