• Title/Summary/Keyword: Timothy

Search Result 317, Processing Time 0.026 seconds

Current development of therapeutic vaccines for the treatment of chronic infectious diseases

  • Pil-Gu Park;Munazza Fatima;Timothy An;Ye-Eun Moon;Seungkyun Woo;Hyewon Youn;Kee-Jong Hong
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.1
    • /
    • pp.21-27
    • /
    • 2024
  • Chronic infectious diseases refer to diseases that require a long period of time from onset to cure or death, the use of therapeutic vaccines has recently emerged to eradicate diseases. Currently, clinical research is underway to develop therapeutic vaccines for chronic infectious diseases based on various vaccine formulations, and the recent success of the messenger RNA vaccine platform and efforts to apply it to therapeutic vaccines are having a positive impact on conquering chronic infectious diseases. However, since research on the development of therapeutic vaccines is still relatively lacking compared to prophylactic vaccines, there is a need to focus more on the development of therapeutic vaccines to overcome threats to human health caused by chronic infectious diseases. In order to accelerate the development of therapeutic vaccines for chronic infectious diseases in the future, it is necessary to establish a clear concept of therapeutic vaccines suitable for the characteristics of each chronic infectious disease, as well as standardize vaccine effectiveness evaluation methods, secure standards/reference materials, and simplify the vaccine approval procedure.

A Runge-Kutta scheme for smart control mechanism with computer-vision robotics

  • ZY Chen;Huakun Wu;Yahui Meng;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.34 no.2
    • /
    • pp.117-127
    • /
    • 2024
  • A novel approach that the smart control of robotics can be realized by a fuzzy controller and an appropriate Runge-Kutta scheme in this paper. A recently proposed integral inequality is selected based on the free weight matrix, and the less conservative stability criterion is given in the form of linear matrix inequalities (LMIs). We demonstrate that this target information obtained through image processing is subjected to smart control with computer-vision robotic to Arduino, and the infrared beacon was utilized for the operation of practical illustrations. A fuzzy controller derived with a fuzzy Runge-Kutta type functions is injected into the system and then the system is stabilized asymptotically. In this study, a fuzzy controller and a fuzzy observer are proposed via the parallel distributed compensation technique to stabilize the system. This paper achieves the goal of real-time following of three vehicles and there are many areas where improvements were made. Finally, each information is transmitted to Arduino via I2C to follow the self-propelled vehicle. The proposed calculation is approved in reproductions and ongoing smart control tests.

Experimental and AI based FEM simulations for composite material in tested specimens of steel tube

  • Yahui Meng;Huakun Wu;ZY Chen;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.475-485
    • /
    • 2024
  • The mechanical behavior of the steel tube encased high-strength concrete (STHC) composite walls under constant axial load and cyclically increasing lateral load was studied. Conclusions are drawn based on experimental observations, grey evolutionary algorithm and finite element (FE) simulations. The use of steel tube wall panels improved the load capacity and ductility of the specimens. STHC composite walls withstand more load cycles and show more stable hysteresis performance than conventional high strength concrete (HSC) walls. After the maximum load, the bearing capacity of the STHC composite wall was gradually reduced, and the wall did not collapse under the influence of the steel pipe. For analysis of the bending capacity of STHC composite walls based on artificial intelligence tools, an analysis model is proposed that takes into account the limiting effect of steel pipes. The results of this model agree well with the test results, indicating that the model can be used to predict the bearing capacity of STHC composite walls. Based on a reasonable material constitutive model and the limiting effect of steel pipes, a finite element model of the STHC composite wall was created. The finite elements agree well with the experimental results in terms of hysteresis curve, load-deformation curve and peak load.

Participation in G-CLEF Preliminary Design Study by KASI

  • Kim, Kang-Min;Chun, Moo-Young;Park, Chan;Park, Sung-Joon;Kim, Jihun;Oh, Jae Sok;Jang, Jeong Gyun;Jang, Bi Ho;Tahk, Gyungmo;Nah, Jakyoung;Yu, Young Sam;Szentgyorgyi, Andrew;Norton, Timothy;Podgorski, William;Evans, Ian;Mueller, Mark;Uomoto, Alan;Crane, Jeffrey;Hare, Tyson
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.52.3-53
    • /
    • 2015
  • The GMT-Consortium Large Earth Finder (G-CLEF) is a fiber-fed, optical band high dispersion echelle spectrograph that selected as the first light instrument for the Giant Magellan Telescope (GMT). This G-CLEF has been designed to be a general- purpose echelle spectrograph with the precisional radial velocity (PRV) capability of 10 cm/sec as a goal. The preliminary design review (PDR) was held on April 8 to 10, 2015 and the scientific observations will be started in 2022 with four mirrors installed on GMT. We have been participating in this preliminary design study in flexure control camera (slit monitoring system), calibration lamp sources, dichroic assembly and the fabrication of the proto-Mangin Mirror. We present the design concept on the parts KASI undertaken, introducing the specifications and capabilities of G-CLEF.

  • PDF

Preliminary Design of the G-CLEF Flexure Control Camera

  • Oh, Jae Sok;Park, Chan;Park, Sung-Joon;Kim, Kang-Min;Chun, Moo-Young;Yu, Young Sam;Szentgyorgyi, Andrew;Norton, Timothy;Podgorski, William;Evans, Ian;Mueller, Mark;Uomoto, Alan;Crane, Jeffrey;Hare, Tyson
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.53.1-53.1
    • /
    • 2015
  • The GMT-Consortium Large Earth Finder(G-CLEF) is one of the first light instruments at the Giant Magellan Telescope. The international consortium consists of five astronomical institutes including the Center for Astrophysics, the Observatories of Carnegie Institute, the University of Catolica in Chile, the University of Chicago, and Korea Astronomy and Space Science Institute, led by CfA. The extremely precise radial velocity capability is one of the principal instrumental feature of G-CLEF. The RV goal is 10 cm/s capable of detecting an Earth-like planet around a Sun-like host star. This high precision wavelength calibration stability requires a set of significantly tight optomechanical tolerances in the mechanical design of the Flexure Control Camera system. KASI is in charge of the Flexure Control Camera and the Calibration Light System for the G-CLEF spectrograph. In this presentation, we introduce the preliminary design and analysis results of the G-CLEF Flexure Control Camera.

  • PDF

INORGANIC SELENIUM FOR SHEEP I. SELENIUM BALANCE AND SELENIUM LEVELS IN THE DIFFERENT RUMINAL FLUID FRACTIONS

  • Serra, A.B.;Nakamura, K.;Matsui, T.;Harumoto, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.83-89
    • /
    • 1994
  • The effects of inorganic selenium (Se), selenate and selenite on Se balance levels in the different ruminal fluid fractions were studied using Japanese Corriedale wethers with an average body weight of 47 kg. A $3{\times}3$ Latin square design was used with three animal, three periods and three treatments. In each period, there was 7 d dietary adjustment followed by 5 d total collection of urine and feces. Ruminal fluid samples were obtained at 0, 1, 3, 5 and 7 h postprandially on the final day of the collection period. The three dietary treatments were: (1) without Se supplementation (control); (2) with Se supplement as sodium selenate; and (3) sodium selenite at a rate of 0.2 mg Se/kg dietary DM. The basal diet was timothy hay (Phleum pratense L.) fed 2% of body weight/d. Results indicated that Se balance were higher (p < 0.05) for those animals under supplementation than those animals under control. Overall data gathered showed a similar digestion balance of selenate and selenite in sheep. Inorganic Se, both selenate and selenite produced positive Se contents of the ruminal feed particles and protozoa. Bacterial Se increased (p < 0.05) on the first three hours post-prandially in Se supplemented diets. Gross ruminal fluid fraction, although there was improvement on their Se content under the supplemented diets, the changes were insignificant over the control. free inorganic Se and Se in soluble protein of the ruminal fluid were not significantly different for selenate and selenite. Most of the Se in the ruminal fluids of the animals under supplementation were insoluble, indicating the influence of rumen environments on Se bioavaliability.

Low Temperature Nanopowder Processing for Flexible CIGS Solar Cells (플렉시블 CIGS 태양전지 제조를 위한 저온 나노입자공정)

  • Park, Chinho;Farva, Umme;Krishnan, Rangarajan;Park, Jun Young;Anderson, Timothy J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.61.1-61.1
    • /
    • 2010
  • $CuIn_{1-x}-GaxSe_2$ based materials with direct bandgap and high absorption coefficient are promising materials for high efficiency hetero-junction solar cells. CIGS champion cell efficiency(19.9%, AM1.5G) is very close to polycrystalline silicon(20.3%, AM1.5G). A reduction in the price of CIGS module is required for competing with well matured silicon technology. Price reduction can be achieved by decreasing the manufacturing cost and by increasing module efficiency. Manufacturing cost is mostly dominated by capital cost. Device properties of CIGS are strongly dependent on doping, defect chemistry and structure which in turn are dependent on growth conditions. The complex chemistry of CIGS is not fully understood to optimize and scale processes. Control of the absorber grain size, structural quality, texture, composition profile in the growth direction is important to achieving reliable device performance. In the present work, CIS nanoparticles were prepared by a simple wet chemical synthesis method and their structural and optical properties were investigated. XRD patterns of as-grown nanopowders indicate CIS(Cubic), $CuSe_2$(orthorhombic) and excess selenium. Further, as-grown and annealed nanopowders were characterized by HRTEM and ICP-OES. Grain growth of the nanopowders was followed as a function of temperature using HT-XRD with overpressure of selenium. It was found that significant grain growth occurred between $300-400^{\circ}C$ accompanied by formation of ${\beta}-Cu_{2-x}Se$ at high temperature($500^{\circ}C$) consistent with Cu-Se phase diagram. The result suggests that grain growth follows VLS mechanism which would be very useful for low temperature, high quality and economic processing of CIGS based solar cells.

  • PDF

Native and Foreign Proteins Secreted by the Cupriavidus metallidurans Type II System and an Alternative Mechanism

  • Xu, Houjuan;Denny, Timothy P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.791-807
    • /
    • 2017
  • The type II secretion system (T2SS), which transports selected periplasmic proteins across the outer membrane, has rarely been studied in nonpathogens or in organisms classified as Betaproteobacteria. Therefore, we studied Cupriavidus metallidurans (Cme), a facultative chemilithoautotroph. Gel analysis of extracellular proteins revealed no remarkable differences between the wild type and the T2SS mutants. However, enzyme assays revealed that native extracellular alkaline phosphatase is a T2SS substrate, because activity was 10-fold greater for the wild type than a T2SS mutant. In Cme engineered to produce three Ralstonia solanacearum (Rso) exoenzymes, at least 95% of their total activities were extracellular, but unexpectedly high percentages of these exoenzymes remained extracellular in T2SS mutants cultured in rich broth. These conditions appear to permit an alternative secretion process, because neither cell lysis nor periplasmic leakage was observed when Cme produced a Pectobacterium carotovorum exoenzyme, and wild-type Cme cultured in minimal medium secreted 98% of Rso polygalacturonase, but 92% of this exoenzyme remained intracellular in T2SS mutants. We concluded that Cme has a functional T2SS despite lacking any abundant native T2SS substrates. The efficient secretion of three foreign exoenzymes by Cme is remarkable, but so too is the indication of an alternative secretion process in rich culture conditions. When not transiting the T2SS, we suggest that Rso exoenzymes are probably selectively packaged into outer membrane vesicles. Phylogenetic analysis of T2SS proteins supports the existence of at least three T2SS subfamilies, and we propose that Cme, as a representative of the Betaproteobacteria, could become a new useful model system for studying T2SS substrate specificity.

Fragility functions for eccentrically braced steel frame structures

  • O'Reilly, Gerard J.;Sullivan, Timothy J.
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.367-388
    • /
    • 2016
  • Eccentrically braced frames (EBFs) represent an attractive lateral load resisting steel system to be used in areas of high seismicity. In order to assess the likely damage for a given intensity of ground shaking, fragility functions can be used to identify the probability of exceeding a certain damage limit-state, given a certain response of a structure. This paper focuses on developing a set of fragility functions for EBF structures, considering that damage can be directly linked to the interstorey drift demand at each storey. This is done by performing a Monte Carlo Simulation of an analytical expression for the drift capacity of an EBF, where each term of the expression relies on either experimental testing results or mechanics-based reasoning. The analysis provides a set of fragility functions that can be used for three damage limit-states: concrete slab repair, damage requiring heat straightening of the link and damage requiring link replacement. Depending on the level of detail known about the EBF structure, in terms of its link section size, link length and storey number within a structure, the resulting fragility function can be refined and its associated dispersion reduced. This is done by using an analytical expression to estimate the median value of interstorey drift, which can be used in conjunction with an informed assumption of dispersion, or alternatively by using a MATLAB based tool that calculates the median and dispersion for each damage limit-state for a given set of user specified inputs about the EBF. However, a set of general fragility functions is also provided to enable quick assessment of the seismic performance of EBF structures at a regional scale.

Studies on the Interspecific and Intergeneric Hybridization in Herbage Grasses I. Effects of hybrid embryo age on callus formation and plant regeneration (화본과목초의 종.속간 잡종에 관한 연구 I. 교잡* 일령에 따른 Callus형성과 식물체재분화)

  • 박병훈;김명환
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.9 no.2
    • /
    • pp.62-67
    • /
    • 1989
  • A breeding program in progress at Suweon Livestock Experiment Station, RDA, involves the hybridization of italian ryegrass (Lm) and several leading forage grasses in an effort to combine the nutritive, productivity and palatability qualities of Lm with the adaptive and cold resistance qual; .les of several leading grasses. In order to study the fate of the hybridization between remotely related species, immatured hybrid embryos were cultured on media. The emasculated plants of Lm were Sikem and Tetrone. Reweille, 2n=14, of perennial ryegrass (Lp.), Forager, 2n=42, of tall fescue(Fa), First, 2n=14,of meadow fescue(Fp), Potomac, 2n=28, of orchardgrass(Dg), and Richmond, 2n=42, of timothy(Ph.p) were used as pollinators. Embryos were isolated on 4, 8, 12, 16, and 20 days after pollination and cultured them on modified Murashige and Skoog media. Calluses and plantlets have been obtained after 8 days old embryos crossing between $Lm{\times}Fa$, after 12 days embryos crossing between $Lm{\times}Lp$, Dg, and Ph.p, and after 16 days embryos crossing between $Lm{\times}Fp$. Both callus and shoot formation occurred on 6 % or less of the plated embryos of $Lm{\times}Fp$, Dg, and Ph.p. Embryoderived callus forming shoots have been obtained from 4 days old embryo crossing between $Lm{\times}Dg$ which has not successfully been done anywhere as far as we know. It means that hybrid plants of species without crossability can be obtained through the use of immatured embryo culture. Some of plated embryos developed directly shoots from embryos and the others shoot-forming callus. Cross between related species showed a high frequency of directly shoot formation from plated embryos and cross between remotely related species a high frequency of callus formation.

  • PDF