• Title/Summary/Keyword: Timing synchronization

Search Result 263, Processing Time 0.027 seconds

Effective timing synchronization methods for femtocell (펨토 기지국의 효과적인 타이밍 동기방안)

  • Shin, Jun-Hyo;Kim, Jung-Hun;Jeong, Seok-Jong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.237-241
    • /
    • 2008
  • Femtocells are cellular access points that connect to a mobile operator's network using residential DSL or cable broadband connections. They have been developed to work with a range of different cellular standards including CDMA, GSM and UMTS. Like legacy base station, the frequency accuracy and phase alignment is necessary for ensuring the quality of service (QoS) for applications such as voice, real-time video, wireless hand-off, and data over a converged access medium at the femtocell. But, the GPS has some problem to be used at the femtocell, because it is difficult to set-up, depends on the satellite condition, and very expensive. So, some techniques are discussed to alternate with the legacy GPS system. NTP, PTP, Synchronous Ethernet use the ethernet to synchronize distributed clocks in packet networks. AGPS support reliable position information than the legacy GPS in poor signal conditions. But, These method also have some problems. So, hybrid timing method like A-GPS+PTP and TV+GPS was developed to make up the weak point of GPS. This paper introduces the each method and compare each other and y propose much better solution for timing synchronization at the Femtocell

  • PDF

TELEMETRY TIMING ANALYSIS FOR IMAGE RECONSTRUCTION OF KOMPSAT SPACECRAFT

  • Lee, Jin-Ho;Chang, Young-Keun
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.117-122
    • /
    • 2000
  • The KOMPSAT(Korea Multi-Purpose SATellite) has two optical imaging instruments called EOC(Electro-Optical Camera) and OSMI (Ocean Scanning Multispectral Imager). The image data of these instruments are transmitted to ground station and restored correctly after post-processing with the telemetry data transfeered from KOMPSAT spacecraft. The major timing information of the KOMPSAT is OBT (On-Board Time) which is formatted by the on-board computer of the spacecraft, based on 1Hz sync. pulse coming from the GPS receiver involved. The OBT is transmitted to ground station with the house-keeping telemetry data of the spacecraft while it is distributed to the instruments via 1553B data bus for synchronization during imaging and formatting. The timing information contained in the spacecraft telemetry data would have direct relation to the image data of the instruments, which should be well explained to get a more accurate image. This paper addresses the timing analysis of the KOMPSAT spacecraft and instruments, including the gyro data timing analysis for the correct restoration of the EOC and OSMI image data at ground station.

  • PDF

Initial Timing Acquisition for Binary Phase-Shift Keying Direct Sequence Ultra-wideband Transmission

  • Kang, Kyu-Min;Choi, Sang-Sung
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.495-505
    • /
    • 2008
  • This paper presents a parallel processing searcher structure for the initial synchronization of a direct sequence ultra-wideband (DS-UWB) system, which is suitable for the digital implementation of baseband functionalities with a 1.32 Gsample/s chip rate analog-to-digital converter. An initial timing acquisition algorithm and a data demodulation method are also studied. The proposed searcher effectively acquires initial symbol and frame timing during the preamble transmission period. A hardware efficient receiver structure using 24 parallel digital correlators for binary phase-shift keying DS-UWB transmission is presented. The proposed correlator structure operating at 55 MHz is shared for correlation operations in a searcher, a channel estimator, and the demodulator of a RAKE receiver. We also present a pseudo-random noise sequence generated with a primitive polynomial, $1+x^2+x^5$, for packet detection, automatic gain control, and initial timing acquisition. Simulation results show that the performance of the proposed parallel processing searcher employing the presented pseudo-random noise sequence outperforms that employing a preamble sequence in the IEEE 802.15.3a DS-UWB proposal.

  • PDF

English Digital Signal Processing Circuit in HD Monitor using Synchronization Signal Optimization (동기신호 최적화 기법을 통한 고품위급 모니터의 디지털 신호처리회로 구현)

  • 천성렬;김익환;이호근;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1152-1160
    • /
    • 2003
  • Start The current paper proposes an improved HD(High Definition) monitor that can support a signal input with various resolutions. Due to the inadequate performance of the built-in digital PLL(Phase-locked Loop) of an ADC(Analog to Digital Converter) and poor tolerance of ADC ICs, there are problems in the stable processing of synchronization signals with various input signals. Accordingly, the proposed synchronization signal optimization technique regenerates the horizontal synchronization signal in the vertical blanking interval based on the regularity of the synchronization signal, i.e. the timing of the falling edge signal remains constant, thereby solving the above problem and minimizing the interference of the system. As a result, the proposed system can stabilize various synchronization signals with different resolution modes.

System Performance with Synchronization Errors in Distributed Beamforming Systems (분산 빔포밍을 이용한 시스템에서 동기에러에 의한 시스템 성능 영향 분석)

  • Kim, Haesoo;Kwon, Seong-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.452-459
    • /
    • 2015
  • Three synchronization issues, i.e., phase, frequency, and symbol time, have to be properly controlled to achieve distributed beamforming gain. In this paper, the impacts of synchronization errors in distributed beamforming are analyzed for both single-carrier and OFDM systems. When the channel is constant over a symbol duration, the performance degradation due to phase offset is the same for both single-carrier and OFDM systems. For symbol timing offset in OFDM systems, high frequency subcarriers are more susceptible as compared to low frequency ones. Frequency offset is critical in OFDM systems since it leads to interference from the other subcarriers as well as power loss in the desired signal.

Design of Synchronization Algorithms for Burst QPSK Receiver (버스트 QPSK 수신기의 동기 알고리즘 설계)

  • 남옥우;김재형
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.7
    • /
    • pp.1219-1225
    • /
    • 2001
  • In this Paper we describe the design of synchronization algorithms for burst QPSK receiver, which are applicable to BWLL uplink. The demodulator consists of digital down converter, matched filter and synchronization circuits. For symbol timing recovery we ufo Gardner algorithm. And we use forth power method and decision directed method for carrier frequency recovery and phase recovery, respectively. For the sake of performance analysis, we compare simulation results with the board implemented by FPGA which is APEX20KE series chip for Alter. The performance results show it works quite well up to the condition that a frequency offset equal to 4.7% of symbol rate.

  • PDF

A Method of Fault Diagnosis for Engine Synchronization Using Analytical Redundancy (해석적 중복을 이용한 내연 기관 엔진의 동기화 처리 이상 진단)

  • 김용민;서진호;박재홍;윤형진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.89-95
    • /
    • 2003
  • We consider a problem of application of analytical redundancy to engine synchronization process of spark ignition engines, which is critical to timing for every ECU process including ignition and injection. The engine synchronization process we consider here is performed using the pulse signal obtained by the revolution of crankshaft trigger wheel (CTW) coupled to crank shaft. We propose a discrete-time linear model for the signal, for which we construct FDI (Fault Detection & Isolation) system consisting residual generator and threshold based on linear observer.

A study on the synchronization parameter to design ADSL chip in DMT systems (DMT시스템에서 ADSL 칩 설계를 위한 동기화 파라미터에 관한 연구)

  • Cho, Byung-Lok;Park, Sol;Kim, Young-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.687-694
    • /
    • 1999
  • In this paper, to draw out the parameter of synchronization for ADSL(Asymmetric Digital Subscriber Line) chip design, we analyze the performance of STR(Symbol Timing Recovery) and frame synchronization with computer simulation. We analyze and design PLL(Phase Lock Loop) loop for ADSL. As a result, we obtained the optimum parameter of STR to design ADSL chip. Also, when performed frame synchronization with several algorithm, we analyzed the performance of FER(Frame Error Rate) and the effect of frame offset with computer simulation.

  • PDF

Improved time and frequency synchronization for dual-polarization OFDM systems

  • Ninahuanca, Jose Luis Hinostroza;Tormena Jr., Osmar;Meloni, Luis Geraldo Pedroso
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.978-990
    • /
    • 2021
  • This article presents techniques for improved estimation of symbol timing offset (STO) and carrier frequency offset (CFO) for dual-polarization (DP) orthogonal frequency division multiplex (DP-OFDM) systems. Recently, quaternion multiple-input multiple-output OFDM has been proposed for high spectral efficiency communication systems, which can flexibly explore different types of diversities such as space, time, frequency, and polarization. This article focuses on synchronization techniques for DP-OFDM systems using a cyclic prefix, where the application of quaternion algebra leads to new improved estimators. Simulations performed for DP system methods show faster reduction of STO estimator variance with a double-slope line in the logvariance line versus signal-to-noise ratio (SNR) plot compared with singlepolarization (SP) counterparts, and simulations for CFO estimates show a 3-dB gain of DP over SP estimates for same SNR values defined, respectively, for quaternion-valued or complex-valued signals. Cramer-Rao bounds for STO and CFO are derived for the synchronization methods, correlating with the observed gains of DP over SP OFDM systems.

A Study on Cell ID Detection Scheme Using Synchronization Signals for 5G NR System (5G NR 시스템을 위한 동기 신호를 이용한 cell ID 검출을 위한 방법 연구)

  • Ahn, Haesung;Cha, Eunyoung;Kim, Hyeongseok;Kim, Jeongchang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.593-595
    • /
    • 2020
  • 본 논문에서는 5G NR 시스템을 위한 동기 신호를 이용한 cell ID 검출 방법에 대한 성능을 비교하였다. 5G NR(fifth-generation new radio) 시스템의 송신기는 SS/PBCH (synchronization signal/physical broadcast channel) 블록을 송신하며, 수신기는 수신된 SS/PBCH 블록을 이용하여 주파수 및 타이밍 오프셋 (frequency and timing offset)을 추정 할 수 있으며, cell ID (cell identity)는 PSS (primary synchronization signal)와 SSS (secondary synchronization signal)를 통해 검출할 수 있다. 본 논문에서는 cell ID 를 검출할 수 있는 방법으로서 2-stage 디코딩 방법과 결합 최대우도 결정 규칙 (joint maximum-likelihood decision rule: joint ML) 디코딩 방법을 사용하였다. Joint ML 디코딩 방법은 2-stage 디코딩 방법에 비해 더 좋은 검출 성능을 보이지만, 복잡도 측면에서는 2-stage 디코딩 방법이 joint ML 디코딩 방법에 비해 더 낮은 복잡도를 갖는 것을 확인하였다.

  • PDF