• Title/Summary/Keyword: Timing error detector(TED)

Search Result 6, Processing Time 0.022 seconds

A Study on the Timing Recovery using Peak Detector in Underwater Acoustic Communication (수중음향통신에서 Peak Detector를 갖는 시간동기회복에 관한 연구)

  • Han, Min-Su;Kim, Ki-Man
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.371-378
    • /
    • 2012
  • This paper presents a timing recovery method using Gardner TED (Timing Error Detector) with a Peak Detector using Parabola Peak Interpolation in underwater acoustic communication. This method will have an eye to improve phase converge speed of timing recovery and reduced amount of Tx data. The OQPSK(Offset Quadrature Phase Shift Keying) modulation technique was considered. The proposed algorithm has faster recovery speed and more accurate than Gardner TED because the sampling values in the proposed algorithm are moved persistingly to maximum or minimum point using parabolic peak interpolation. when simulation performed using Preposed method, it improved BER (Bit Error Rate) performance about 23% And to evaluate the performances of the proposed algorithm the sea trial was performed in the Korean East Sea. And distance of a transmitter-receiver is 3 km each other. As a result, the proposed algorithm outperforms better BER performance about 20% of timing recovery than the Gardner method. Also Proposed method improved converge speed of timing recovery about 1.4 times better than Gardner method.

A Timing Recovery Scheme for Variable Symbol Rate Digital M-ary QASK Receiver (가변 심볼율 MQASK(M-ary Quadrature Amplitude Keying) 디지털 수신기를 위한 타이밍 복원 방안)

  • Baek, Daesung;Lim, Wongyu;Kim, Chong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.7
    • /
    • pp.545-551
    • /
    • 2013
  • Timing recovery loop composed of the Timing Error Detector(TED), loop filter and resampler is widely used for the timing synchronization in MQASK receivers. Since TED is sensitive to the delay between the symbol period of the signal and sampling period, the output is averaged out when the symbol rate and sampling rate are quite different the recovery loop cannot work at all. This paper presents a sampling frequency discriminator (SRD), which detects the frequency offset of the sampling clock to the symbol clock of the MQASK data transmitted. Employing the SRD, the closed loop timing recovery scheme performs the frequency-aided timing acquisition and achieve the synchronization at extremely high sampling frequency offset, which can be used in variable symbol rate MQASK receivers.

The Optimization of Timing Recovery Loop for an MQASK All Digital Receivers (MQASK 디지털 수신기 타이밍 복원 루프 구조의 최적화 연구)

  • Seo, Kwang-Nam;Kim, Chong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.40-44
    • /
    • 2010
  • The timing error detector(TED) employed in the closed loop type timing synchronization scheme for an MQASK all digital receiver suffers from the selfnoise-induced timing jitter. To eliminate the timing jitter a prefilter can be added in front of the TED. The prefilter method, however, degrades the stability and timing acquisition performance due to the loop delay and increases the complexity of the synchronizer. This paper proposes a polyphase filter type resampler approach to optimize the performance and architecture of the synchronizer simultaneously. The proposed scheme uses two resamplers which performs matched filtering and matched prefiltering so that the loop delay is minimized with minimal hardware resources. Simulation results showed an excellent acquisition performance with reduced timing jitter.

Analysis of a First Order Multilevel Quantized DPLL with Phase-and Frquency-Step Input (다치 량자화한 일차 DPLL의 위상과 주파수 스텝 입력에 대한 해석)

  • 배건성
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.4
    • /
    • pp.55-60
    • /
    • 1983
  • A new type of digital phase-locked loop (DPLL) that employs a multilevel quantified timing error detector (TED) is proposed and analyzed under the assumption of negligible quantizing effect and no noise. Since the timing error is quantized uniformly, the TED has a linear characteristic. From the linear characteristic of TED, a first order difference equation describing the behavior of the loop is derived. Using the system equation, the loop is analyzed mathematically for phase step and frequency step input. Desired locking condition for the loop to be locked and the lock range for the DPLL's to achieve exact locking independently of initial conditions are ob-tained. And these analyses are confirmed by timing error plane plots and computer simulation.

  • PDF

Design of a Timing Recovery Loop for Inmarsat Mini-m System Downlink Receiver (Inmarsat Mini-m 시스템의 하향 링크 수신기를 위한 Timing Recovery 루프 설계)

  • Cho, Byung-Chang;Han, Jung-Su;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.685-692
    • /
    • 2008
  • In this paper, we propose a timing recovery loop for Inmarsat mini-m system downlink receiver. Inmarsat mini-m system requires a timing recovery loop which is robust in frequency offset and has fast acquisition because Inmarsat mini-m system specification requires frequency tolerance is required of ${\pm}924$ Hz (signal bandwidth: 2.4 kHz) and acquisition time of UW (Unique Word) signal duration (15ms).Therefore, we propose a timing recovery loop which is suitable for Inmarsat mini-m system. The proposed timing recovery loop adopted noncoherent UW detector and differential ELD which applied differential UW signal for stability and fast acquisition in frequency offset environment. Simulation results show that the proposed timing recovery loop has stable operation and fast acquisition in frequency offset environment for the system.

On the user equipment (UE) side time tracker design and implementation of the WCDMA system (WCDMA 시스템의 단말기측 time tracker 설계 및 구현)

  • Yeh, Choong-Il;Chang, Kyung-Hi;Kim, Hwan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2A
    • /
    • pp.96-101
    • /
    • 2003
  • This paper is on the user equipment (UE) side time tracker design and implementation of the wideband code division multiple access (WCDMA) system. The time tracker is constructed as a second order closed loop including time error detector (TED), loop filter (LP), numerically controlled oscillator (NCO), and sample selector (SS). Through the simulation, we found the gain of the TED as a function of the CPICH power contribution to the total transmission power of the base station. Also we derived the transfer function of the loop and the BER versus DPCH power relationships where timing offsets and loop noise bandwidths are used as parameters. In the curve, we can conclude that there are appropriate loop noise bandwidths according to the given environments for the better performance.